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PREFACE

The objective of this AGARD-FDP-VKI Special Course was to provide a status report on our understanding and ability
to predict three-dimensional compressible flows including the complex effects of flow separation. Stimulation for this course
arose from a variety of projects underway or receiving strong consideration in many countries, the next generation supersonic
transport, HERMES, the National Aerospace Plane, HOTOL, SANGER, the "Orient Express", etc.

An overview of the applications and problem areas set the stage for the course and was followed by two lectures which
discussed topics that are basic to all that followed. First, the capabilities and limitations of computational flud dynamics to
describe these complex flows was addressed, and second a review of turbulence models appropriate to compressible flows
was presented.

The remainder of the lectures concentrated on a series of generic problems which may be vieved as either a means to
understand flow physics or as building blocks for vehicle design. They were:

- interactions of the shock-shock type which can lead to locally high pressures and heat transfer rates;

- corner flows which are characterized by multiple shock wave-boundary layer interactions;

- glancing shock wave-boundary layer interactions which provoke local separations and high heat transfer rates in
re-attachment regions;

- unsteadiness which seems to characterize nearly all shock-induced flow separations.

The course closed with a discussion on how the chemical reactions present in highly hypersonic flows will influence
three-dimensional hypersonic flows fields.

Short contributions from members of the audience who described relevant research in progress at their respective
organizations were presented on the last day of the course.

The course and the material assembled in this book were prepared under the combined sponsorship of the Fluid
Dynamics Panel, the von Kirm.n Institute, and the Consultant and Exchange Program of AGARD. Presentations were made
at the von Ksirmin Institute, Rhode-Saint-Gense, Belgium, on 8-12 May 1989 and at NASA's Ames Research Center,
Moffett Field, California, USA, on 10-14 July 1989.

John F.Wendt
Special Course Director
von Kdrmin Institute for Fluid Dynamics



AVANTPROPOS

L'objcctif dc cc cours sp~cial AGARD[FDP/VKI fut de preseniter un rapport dc synthe sur l'tat des coiuiaissctces et
des capacit~s en mati~re dc prdvisioit des 5coulements compressibles tridimiensionnels, y compris les effets complexes do
separation de I'coulement.

La raison dl' tre decc cours sc trouve dans on ccrtain nombre de projets qui sont soit en coors, soit au stadc final
dd6tudc dans plusicurs; pays savoir: l'a~roncf dc transport supersonique dc [a prochaine gdm~ration, HERMES, l'aironef
national adrospatial, HOTOL, SANGER. 'LOrient Express" etc.

Le cours a commcncd par un tour d'horizon des applications Ct des domaines probhimatiqucs, suivi de dcux
communications sur des aspects fondamentaux de la question. D'abord les possibiiit~s et les limites des mdthodes du calcul
en dynamiquc des floides en cc qui concerne la caract~risation de ces 6coulements complexes. et enisuite les inodiles de
turbulence les plus adaptds aux 6coulements compressibles.

Les autres communications concernaient une s~rnc de probl'es g~5isriques qoi peuvent 6tre vus soit comme on
cdl'5nent clt6 pour la comprehension de Ia physique des 6coulernents, soit comme des modules de Ia conception des v~hicules
adriens.

11 s'agit des problimes suivants;

- les interactions do type choc-choc, qoi peovent conduire localement ii des fortes pressions eta~ des taux de transfert
de chaleor 6levds

- les deoulements dWangle qui sont caractdrisds par des interactions do type onde de choc multiple-cooche limnite

- les interactions do type ondc de choc rasante-couche limite, qoi provoquent des sdparations locales et
engendrenit des taux de transfert do chaleur 6levds dans Ics zones de reattachement

- l'instabilitd qui semble 6trc caractdristiquc de Ia quasi-toltite des cas de ddcollement de l'coulement sous l'cffet
de londc dechoc.

Le cours s'est termin6 par one discussion sur le thi~mc de l'influenc des rdactions chimiques qoi se prodoisent dans les
ideoulements fortement hypersoniqoes sur les champs d"~coulcencnt hypersoniqoes tridimensionnels

Lc dernierjour du coors, certains membres docl'assstancc ont prdsekiu6 des rdsumds des travaux de recherche en coors
cc sujet au scmn de leurs organisations respectives.

Le coors et les textes do prdsent recocil ont it6 prdpards sous l'gide conjointe do Panel AGARD de Ia Dynamique deg
Fluides, l'Institut von K~irmdin et Ie programme AGARD des Consultants et des Echanges. Les prdsentations ont 6~t6 donndcs
au von Kdrmin Institute, Rhode-Saint-Genise, en Belgique, lc 8-12 mai 1989 et au NASA Ames Research Center, Moffet
Field, California, ao Etats-Unis, Ic 10-14 joillet 1989.

John F.Wendt
Directeur do Cours Spdcial
Institut von Kiimin de la Dynamiqoc dcs Fluides:

iv
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OPPORTUNITIES FOR IMPROVED UNDERSTANDING OF SUPERSONIC
AND HYPERSONIC FLOWS

by

Robert A.Jones
Manager, Hypersonic Technology Office

NASA Langley Research Center
Hampton, VA 23665

United States

Note: The author has not provided a formal copy of this paper
What followvs comprises copies of the %ielvgraphls used

during the lecture and their associated texts.

I. INTRODUCTION

THIS OVERVIEW DESCRIBES SOME OF THE DIVERSS APPLICATIONS WHICH ARE

FORESEEN IN THE SUPERSONIC AND HYPERSONIC REGIME, AND POINTS OUT BOTH

THE NEED AND THE OPPORTUNITY FOR IMPROVED UNDERSTANDING OF THE SUBJECT.

NEW FACILITIES AND EXPERIMENTAL TEST TECHNIQUES COMBINED WITH

COMPUTATIONAL FLUID DYNAMICS METHODS ARE DESCRIBED TO ILLUSTRATE

CHALLENGING FLOWS OVER SUPERSONIC WINGS, SEPARATED FREE-SHEAR MIXING

LAYERS, AND IN SCRAMJET-AIRFRAME INTEGRATION.
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II. LOW DISTURBANCE TUNNEL S F0R

SUPERSONIC AND

HYPERSONI C FLOW RESEARCH

IT HAS BEEN WELL KNOWN FOR A NUMBER OF YEARS THAT BOUNDARY-LAYER

TRANSITION MEASURED IN WIND TUNNELS OCCURRED AT LOWER REYNOLDS NUMBERS

THAN FOR MEASUREMENTS MADE IN FLIGHT FOR SUPERSONIC SPEEDS. THIS EARLY

TRANSITION IN WIND TUNNELS IS DUE TO THE ACOUSTIC NOISE RADIATED FROM

THE NOZZLE WALL TURBULENT BOUNDARY LAYERS. WHAT IS NEEDED IS A "QUIET"

TUNNEL THAT HAS LAMINAR FLOW ON THE NOZZLE WALLS, YET OPERATES AT HIGH

ENOUGH REYNOLDS NUMBERS TO MATCH THOSE OF FLIGHT VEHICLES.

NEED FOR QUIET TUNNEL

PROBLEMt

I ALL EXISTING WIND TUNNELS FOR M 1 2.5 HAVE HIGH INTENSITY ACOUSTIC NOISE
RADIATED FROM NOZZLE WALL TURBULENT BOUNDARt LAYERS

I Ams PRESSURE DISTURBANCES FROM -1 TO 8 PERCENT OF MEAN

I FREQUENCIES TO -150 KHZ

I NOISE DOMINATES OR INTERACTS WITH:

-.. BOUNDARY LAYER TRANSITION

I FREE TURBULENT SHEAR FLOWS AND SEPARATION

I UNSTEADY FLOWS

NASA LANGLEY RESEARCH CENTER HAS DEVELOPED A SUPERSONIC OUIET TIONNEL

THAT MAINTAINS LAMINAR WALL BOUNDARY LAYERS AND THUS HAS NO NOISE

RADIATION IN ITS TEST SECTION FROM TURBULENT NOZZLE WALL BOUNDARY LAYER.
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NASA LANGLEY APPROACH TO PROBLEM OF H I QUIET TUNNEL

PILOT FACILITY

I HIGH QUALITY PARTICLE FILTERS - / '

I SETTLING CHAMBER TREATMENT

* ACOUSTIC BAFFLES (HIGH DENSITY POROUS PLATES)
* HONEYCOMB
* TURBULENCE SCREENS

I UNIQUE TWO-DIMENSIONAL NOZZLE DESIGN

M MAINTAINS LAMINAR WALL BOUNDARY LAYERS (VZERO' NOISE RADIATION) ON CONTOUR
WALLS TO NIGH REYNOLDS NUMBERS

- BOUNDARY LAYER REMOVAL UPSTREAM OF THROAT
- HIGHLY POLISHED WALLS
- RAPID EXPANSION CONTOUR

A PILOT "QUIET" TUNNEL CALLED THE SUPERSONIC LOW-DISTURBANCE TUNNEL IS

CURRENTLY IN OPERATION. THIS CHART ILLUSTRATES THE KEY FEATURES OF THE

FACILITY AND SHOWS THE REGION OF TEST SECTION FLOW THAT IS FREE OF

RADIATED NOISE.

SUPERSONIC LOW-DISTURBANCE TUNNEL

Mach 3.5 pilot nozzle
Larinx rTurbulenlt Radiated noise 1

.... rinep -

Flow CeerkwliIjnem d

" Blow 'own tnnel - high valve and pipe noise

* Settling chamber treatment
a Subsonic boundary-layer removal
* Highly polished walls
" Laminar boundary-layer on nozzle walls
• Laminar to turbulent transition on test models same as flight data
* Incident noise can be varied

4,
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MEASUREMENT OF THE ROOT-MEAN-SQUARE PRESSURE COEFFICIENT OBTAINED IH

TEST SECTION OF THE MACH 3.5 QUIET TUNNEL AT AN ORDER OF MAGNITUDE LOWER

THAN THOSE OBTAINED IN CONVENTIONAL SUPERSONIC TUNNELS.

COMPARISONS OF RMS PRESSURE COEFFICIENTS
TEST

SECTION
TUNNEL M SIZE, In.

0 0 oAEDC A 3 40X40

A 6 50DIA
& D 4 12x120n. V1JPL1111 3 I18x2

RMS 41
PRESSURE 5

COEFFICIENT,
PA V 10-2 [ RIRSN 35 Ix

percent , _u_ _

ED VALVE LcT.IjN-In. SIGNAL

'6E 4.<X 1 T RACRSJ0PEN Xa 14.5 TURBULENT
i<"CLOSED Xg 14 TURBULENT

1- SOLID SYMBOLS: HOT WIRE
1OPEN SYMBOLS: PRESSURE10.  I , = ,z . ..I TRANSDUCERS

REYNOLDS NUMBER(BASED ON EFFECTIVE EXIT DIAME1ER(

BOUNDARY-LAYER TRANSITION DATA MEASURED ON SHARP SLENDER CONES IN

CONVENTIONAL WIND TUNNELS AND IN FLIGHT TESTS ARE COMPARED WITH DATA

TAKEN IN THE MACH 3.5 QUIET TUNNEL. DATA FOR THE ORIGINAL NOZZLE WALL

WHICH HAD A SURFACE FINISH OF 100,/-INCH ROUGHNESS SHOWED, FOR THE

FIRST TIME AT UNIT REYNOLDS NUMBER OF UP TO 8x106 , THAT FLIGHT LEVEL OF
TRANSITION REYNOLDS NUMBERS WERE MAINTAINED OUT TO MUCH HIGHER UNIT

REYNOLDS NUMBER. IN FACT, WITH THE NEW NOZZLE (20/.L -INCH ROUGHNESS),

VIRTUALLY NO VARIATION OF TRANSITION REYNOLDS NUMBER WITH UNIT REYNOLDS

IS OBSERVED.

TRANSITION REYNOLDS NUMBERS ON SHARP CONES

4
Quiet tunnel data, bleed valve open

Max k,
Nozzle M gt- inch

original 3.5 40
Axis 5.0

8 Flght data
RoT 6 M 1.4to46

4-

2 '/III////I!'~. Conventonal Wind
tunnel data

6Me.2.5to4.4

2 4 6 810 5  2 4 6 8106  2

R ein.



THERE HAS BEEN A LONG STANDING DISCREPANCY BETWEEN BOUNDARY-LAYER

TRANSITION PREDICTIONS FROM LINEAR STABILITY THEORY AS APPLIED TO CONES

AND FLAT PLATES AND DATA OBTAINED IN LARGE CONVENTIONAL WIND TUNNELS.

THEORY PREDICTS THE RATIO OF CONE TO FLAT PLATE VALUES TO BE LESS THAN

ONE WHERE AS THE RESULTS FROM CONVETIONAL TUNNEL SHOWS THIS RATIO TO

VARY FROM ONE TO 2.5 DEPENDING ON MACH NUMBER. IT TURNS OUT 7HAT FLAT

PLATES ARE MORE SENSITIVE TO THE LOWER FREQUENCY RADIATED NOISE THAN

CONES AND IT IS SHOWN BY THE DATA FROM THE QUIET TUNNEL THAT WHeN

RADIATED NOISE IS ABSENT THE RATIO MEASURED AGREES WITH PREDICTIONS FROM

STABILITY THEORY.

RATIO OF CONE-TO-FLAT-PLATE
TRANS;TION REYNOLDS NUMBERS

O Data: LORC Pilot Quiet Tunnel
x Prediction for N - 10
+ Extrapolated to N - 10: Mack

Pote's data correlation AF DC, 6-' f

2
(ReT)cone

(ReTPlanar

g +

0 3 4 5 6 7 8

Mach nufer

DATA TAKEN FROM THE NEW QUIET TUNNEL FOR BOUNDARY-LAYER TRANSITION ON

BOTH CONES AND FLAT PLATES ARE IN AGREEMENT WITH PREDICTIONS FROM

STABILITY THEORY AND SHOW THAT FLAT PLATES ACTUALLY HAVE TRANSITION

REYNOLDS NUMBERS HIGHER THAN CONES WHEN THERE ARE NO DISTURBANCES

PRESENT. THIS IS A RESULT THAT HAS NEVER BEEN MEASURED IN WIND TUNNELS

BEFORE. THIS RESULT INDICATES THAT LINEAR STABILITY THEORY CAN BE USED

AS FOR VALID PREDICTIONS OF BOUNDARY-LAYER TRANSITION AT SUPERSONIC

SPEEDS.
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TRANSITION ON CONES AND FLAT PLATES

Model Mach no. Wind tunnel Ref
o Cone, 3.5 LaRC low 19
o Flat plate 3.5 disturb. 19

Flat plate 3.0 AEDC 27
Flat plate 3.7 JPL 20 in. 28,29

2 Flat plate prediction
17 forN -10

8 Cone prediction
6 for N 10

ReT 4

2 Tunnel A (40" x 40)

1 / '-Tunnel D (12" X 12")106  
1 ./.-

105 2 4 6 8106 2
Rein.

A DISTURBANCE GROWTH RATE OR LINEAR AMPLIFICATION RATE OBTAINED FROM

STABILITY THEORY OF EN WHERE N IS DEFINED AS INDICATED ON THE CHART IS A

GOOD PREDICTION OF THE ONSET OF BOUNDARY-LAYER TRANSITION FROM LAMINAR

TO TURBULENT FLOW.

Ne METHOD FOR TRANSITION PREDICTION
(Smith, 1952)

" Calculate mean boundary layer profiles
* Calculate linear amplification rate by using 'appropriate

stability model"

" Transition occurs when disturbances In the boundary layer
are first amplified by a factor eN, where

N = £n(A/A O) =J.xT (linear amplification rate) dx
x0

COMPARISON OF DATA FROM A VARIETY OF CONFIGURATIONS SHOW THAT WHEN THE

DOMINANT PHYSICAL EFFECTS ARE INCLUDED IN THE STABILITY THEORY AND INPUT

DISTURBANCES ARE SMALL AS THEY ARE IN FLIGHT OR IN A QUIET FACILITY, A

VALUE OF N OF APPROXIMATELY 10 IS A GOOD PREDICTION OF TRANSITION.
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TRANSITION CORRELATIONS WITH 9N THEORY
N= In A/Ao

Flow Instability N Reference

" Concave watts, Taylor-Gdrtier
low speed vortices (TG) 6-12 Smith, 1955

" Two-dim~ensional Toll men -Schlichting
wings, low speed waves (TS) 9-12 Jaffe, et at, 1970

" Heated bodies,
water TS 9-12 Wazzan. et at, 1979

" Roiating disc Cross-flow
vortices (CF) 11 Malik, et at, 191

" Cones, a= 0
M4= 1.2 -3.5 IS 9-11 Malik, 1984

" Swept cylinder,
tow speed CF 11 Malik, et at, 1914

* Concave watts,
supersonic TG 9-11 Present
Concludle: When dominant physical effects are Included In theory and
Input disturbances are smail; N 9-12

SINCE NOISE DOMINATES OR AT LEAST INTERACTS WITH SEVERAL VERY IMPORTANT

TYPES OF FLOW OTHER THAN BOUNDARY-LAYER TRANSITION RESEARCH WITH THE NEW

QUIET TUNNELS THAT ARE NOW UNDER CONSTRUCTION FROM M4ACH 3.5 To 20 WILL

OPEN NEW OPPORTUNITIES FOR IMPROVING OUR UNDERSTANDING OF BOUNDARY-LAYER

SEPARATION, FREE SHEAR LAYER FLOWS AND MIXING OF DIFFERENT GASES IN

FREE-SHEAR LAYER FLOWS AS WELL AS BOUNDARY-LAYER TRANSITION.

0 U IE T" TU N NE LS M AY P ROV I DE I NP ROV ED

U N DE RST A NDI XG 0OF S U PE RSON I C ANHD

H YP E R S0N IC F LOW S

RAIATED NOISE DOMINATES OR INTERACTS WITH:

I BOUNDARY LAYER TRANSITIOAI
I FREE-SHEAR LAYER FLOWS
I MIXING IN FREE-SHEAR LAYER FLOWS
I SEPARATION

SEVERAL NEW QUIET TUNNELS ARE PRESENTLY PLANNED AT NASA LANGLEY
* SMALL MACH 6 QUIET TUNNEL RECENTLY PUT INTO OPERATION
I MACN I TUNNEL (18" DIAN TEST SECTION) NOW KING MODIFIED TO

PROVIDE QUIET FLOW
I MACH 20 HELIUM TUNNEL (201"DIAH TEST SECTION) NOW BEING

MODIFIED TO PROVIDE QUIET FLOW
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III. A GENERALIZED CFD BASED DESIGN PROCEDURE FOR ACTIVELY

COOLED HYPERSONIC WIND-TUNNEL NOZZLES SUBJECT TO

WALL SHAPE CONSTRAINTS

THE DESIGN OF SUPERSONIC AND HYPERSONIC WIND-TUNNEL NOZZLES HAVE USED

TECHNIQUES BASED ON THE METHOD OF CHARACTERISTICS WITH BOUNDARY LAYER

CORRECTIONS FOR MANY YEARS. THESE TECHNIQUES ARE RESTRICTED TO EITHER

2-D OR AXISYMMETRIC FLOWS. THREE-DIMENSIONAL DESIGNS OR DESIGNS WHOSE

CONSTRAINTS FACE THE RELAXATION OF THE REQUIREMENT OF SHOCKLESS rLOW

REQUIRE MORE SOPHISTICATED CFD TOOLS. THE NEXT CHART AND SKETCH

DESCRIBE THE CONVENTIONAL DESIGN PROCEDURES.

Conventional Design Procedure

1) Ptot, T Iot, M e . - rth

2) Gradual subsonic contraction:
r'(z) - r*(z) - 0 - straight sonic line

3) An expansion wall profile is specified based on wall
heating and flow separation criteria.

4) Downstream of the inflection point, the wall angle is chosen
to cancel waves that intersect it.

5) A displacement thickness 8 is added to the inviscid
contour.

, z t(z) 0 Sic f0w charadctlstc

It region', ~~ en\. .g__ ,. Z_
IpansIon l  

ner iw|ro 'f
ilowe"-l ,on

Zin ft
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THE EFFORT TO DESIGN NOZZLE CONTOURS FOR THE NASA LANGLEY 8-FOOT HIGH-

TEMPERATURE TUNNEL (8'NTT) PROVIDES AN EXAMPLE OF THE USE OF ADVANCED

CFD CODES IN NOZZLE DESIGN. UNDER THIS EFFORT, A MACH 4 AND MACH 5

NOZZLE WERE DESIGNED SUCH THAT THEY SMOOTHLY BLENDED WITH THE EXISTING

MACH 7 NOZZLE ABOUT 200 INCHES UPSTREAM OF THE TEST SECTIO::. THE

PHYSICAL DESIGN CONSTRAINTS OF THESE NOZZLES ARE SHOWN HERE.

DESIGN CONSTRAINTS FOR MACH 5 HIGH TEMPERATURE
TUNNEL NOZZLE

* AXIAL POSITION A AND ENTRANCE RADIUS rs SPECIFIED FOR
SUBSONIC REGION

* THROAT LOCATION T SPECIFIED

* TEST SECTION RADIUS rt SPECIFIED

* AXIAL LOCATION OF STATION B WHERE CURRENT AND EXISTING
NOZZLE WALL BLEND SMOOTHLY IS SPECIFIED TOGETHER WITH THE
LENGTH BC OF THE CURRENT NOZZLE WALL BEING RETAINED

THE FLOW QUALITY REQUIREMENTS WERE THAT THE MACH NUMBER VARIATION BE

LESS THAN +0.1 FROM ITS MEAN VALUE ACROSS 60% OF THE CORE FLOW. THIS

WAS COMPLICATED BY THE FACT THAT THE HIGH TEMPERATURE FLOW IN THE TUNNEL

REQUIRED COOLING OF THE NOZZLE THROATS BY TRANSPIRATION OF A FOREIGN

GAS. FURTHERMORE, THE LARGE STATIC TEMPERATURE VARIATION IN THE NOZZLES

RESULTED IN A SIGNIFICANT VARIATION IN GAS PROPERTIES AND THOSE

VARIATIONS HAD TO BE PROPERLY MODELED.

FLOW QUALITY REQUIREMENTS

EXIT PLANE

T T M+ 500 RAI OVER 60% OF CORE FLOW
TT +500 Rift J

AXIS

IT 500 R/It

aZ
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WITH THESE CONSTRAINTS, THE CONVENTIONAL SHOCKLESS NOZZLE DESIGN

PROCEDURE WAS NOT APPLICABLE. A NEW ITERATIVE DESIGN PROCEDURE WAS

DEVELOPED THAT COUPLED AN EULER CODE, A METHOD OF CHARACTERISTICS CODE,

AND A BOUNDARY-LAYER CODE. A NAVIER-STOKES CODE WAS USED TO CHECK THE

OVERALL FLOW QUALITY OF THE FINAL DESIGN. ALL CODES INCLUDED CONSISTENT

REAL GAS CHEMISTRY PACKAGES FOR THE HYDROGEN-CARBON, OXYGEN, NITROGEN

COMBUSTION PRODUCTS OF THE HEATER. IN ADDITION, THE NAVIER-STOKES AND

BOUNDARY-LAYER CODES HAD THE CAPABILITY TO ACCOUNT FOR THE FOREIGN GAS

INJECTION USED FOR TRANSPIRATION COOLING OF THE THROAT.

NEW CFD BASED DESIGN PROCEDURE

* DUE TO IMPOSED CONSTRAINTS, CONVENTIONAL SHOCKLESS
NOZZLE DESIGN PROCEDURE NOT APPLICABLE

0 A NEW CFD BASED DESIGN PROCEDURE DEVELOPED THAT ITERA-
TIVELY COUPLES AN EULER CODE, A METHOD OF CHARACTERISTICS
CODE, AND A BOUNDARY-LAYER CODE

* FINAL DESIGN CHECKED BY FULL NAVIER-STOKES CODE

0 CODES IN THE DESIGN PROCEDURE INCLUDE

- GENERALIZED EQUILIBRIUM GAS CHEMISTRY OF COMBUSTION
PRODUCTS

- TRANSPIRATION COOLING OF THROAT WITH A FOREIGN GAS

* NEW DESIGN PROCEDURE APPLICABLE TO CONVENTIONAL NOZZLE
DESIGNS ALSO

THE NEXT TWO FIGURES SHOW SOME RESULTS OBTAINED FROM THE DESIGN OF THE

MACH 5 NOZZLE. THE FIRST FIGURE SHOWS THE MACH NUMBER PROFILES IN THE

EXIT PLANE OF THE NOZZLE CALCULATED BY THE NAVIER-STOKES AND EULER

CODES. THE PROFILE HAS A MEAN VALUE OF 4.96 WITH A VARIATION OF +0.06

OVER MORE THAN 70% OF THE TEST SECTION RADIUS, THUS SATISFYING THE MACH

NUMBER VARIATION CONSTRAINT. HOWEVER, A WEAK SHOCK FORMS NEAR THE

NOZZLE THROAT AND INTERSECTS THE EXIST PLANE, AS IS CLEARLY SEEN FROM

THE MACH NUMBER CONTOURS IN THE SECOND FIGURE. IT APPEARS THAT THE WEAK

SHOCK CANNOT BE AVOIDED UNDER THE SPECIFIED GEOMETRIC CONSTRAINTS.

THESE FIGURES ALSO ILLUSTRATE THE QUALITATIVE SIMILARITIES IN THE FLOW

SOLUTION OBTAINED FROM THE ITERATIVE DESIGN PROCEDURE AND THE NAVIER-

STOKES CODE.



EXIT PLANE MACH NUMBER
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IV. WING LEESIDE FLOWS AT

SUPERSONIC SPEEDS

SUPERSONIC WING DESIGNS OF THE 1960'S AND 1970's WERE BASED ON ATTACHED-FLOW CONCEPTS.

THESE DESIGNS WERE SEVERELY LIMITED (LOW TO MODERATE CL) AND CONSTRAINED (WEAK SHOCKS AND

NO ADVERSE PRESSURE GRADIENTS).

THE 1980'S BROUGHT ON REQUIREMENTS OF SUPERSONIC NANEUVERABILITY AND THE DEVELOPNENT OF

ADVANCED COMPUTER CODES WHICH COULD HANDLE,, TO SOME DEGREE, SEPARATED VORTEX FLOWS. WITH

THESE NEW REQUIREMENTS AND NEW TOOLS, IT WAS-NATURAL TO EXTEND WING DESIGN CONCEPTS TO

INCLUDE SEPARATED FLOWS.

ONE OF THE FIRST STEPS WAS TO DETERMINE UNDER WHAT CONDITIONS FLOW SEPARATION OCCURRED AND

WHAT DIFFERENT FLOW STRUCTURES WOULD BE PRODUCED. A LEESIDE FLOW CHARACTERIZATION STUDY

WAS CONDUCTED IN TWO PHASES: IN 1984 OVER A MACH NUMBER RANGE ROM 1.5-2.8 USING

CONVENTIONAL VAPOR-SCREEN TECHNIQUES AND IN 1988 THE MACH NUMBER RANGE EXTENDED TO 4.6

USING LASER VAPOR SCREEN. IN BOTH PHASES, DELTA WING SERIES WAS TESTED WITH LEADING-

EDGE-SWEEP ANGLES OF 52.50, 60.0, 67.5, 75.00.

THE RESULTS OF THESE TWO PHASE STUDY ARE SHOWN IN THE FIGURE. ALTHOUGH THE PARAMETERS OF

THE STUDY WERE THREE (MACH NUMBER, WING LEADING-EDGE SWEEP, AND ANGLE OF ATTACK) THE

RESULTS COULD BE PRESENTED IN TERMS OF TWO PARAMETERS (MACH NUMBER NORMAL TO THE WING

LEADING EDGE, MN, AND ANGLE OF ATTACK NORMAL TO THE WING LEADING EDGEO(N).

THE 1984 STUDY RESULTS SHOWED THAT SIX BASIC TYPES OF FLOW COULD OCCUR; THE CASHED LiVE

INDICATES THE TEST MATRIX OF THE 1988 STUDY. THE 1988 STUDY EXTENDED THE MACH NUMBER

RANGE AND, USING THE LASER VAPOR SCREEN, IDENTIFIED SOME NEW SUBCLASSES OF FLO4 TYPES NOT

SEEN IN THE PREVIOUS STUDY.

ONE OF THE NEW TYPES OF FLOW OCCURS IN THE CLASSICAL VORTEX-WITH-SHOCK REGION AND TWO

SUBREGIONS EXIST AS SHOWN IN THIS FIGURE. ONE WITH A VORTEX STRING AND TWO WITH A

CFNTFRI TlJF S FOrK.
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CLASSIFICATION OF LEESIDE FLOW TYPES
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ONE OF THE NEW TYPES OF FLOW OCCURS IN THE CLASSICAL VORTEX-WITH SHOCK

REGION AND TWO SUBREGIONS EXIST AS SHOWN IN THIS FIGURE--ONE WITH A

VORTEX STRING AND THE SECOND WITH A CENTERLINE SHOCK.

CLASSIFICATION OF LEESIDE FLOW TYPES
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ANOTHER NEW TYPE OF FLOW THAT WAS FOUND IS ILLUSTRATED IN THE NEXT TWO

FIGURES. IN THE SEPARATION BUBBLE WITH SHOCK REGION, TWO SUBREGIONS

ALSO EXIST. ONE IN WHICH THE BUBBLE IS EXTENDED TO THE CENTERLINE.

SEPARATION BUBBLES 'BULGE' INBOARD OF SHOCK

A 75' M =4.6 (1 28'

Shock

Bulge - induced Bow shock
by shock

THE OTHER SUBREGION IS ONE IN WHICH THE BUBBLE BULGES AT THE

CENTERLINE. STUDIES ARE PRESENTLY UNDERWAY TO DETERMINE IF CFD CODES
CAN PREDICT THESE FLOW TYPES AND TO EXTEND THE EXPERIMENTAL FLOW

CLASSIFICATION TO INCLUDE THE EFFECTS OF AIRFOIL PROFILE AND WING

CAMBER.

MODERN FLOW VISUALIZATION TECHNIQUES WHICH SHOW THE COMPLEX STRUCTURE OF

THE SEPARATED FLOW OVER WINGS PROVIDE ANOTHER OPPORTUNITY TO IMPROVE OUR

UNDERSTANDING OF SUPERSONIC AND HYPERSONIC FLOWS.

SEPARATION BUBBLES EXTEND TO CENTERLINE

A =75" M 4 6 =20'"

Shock, " Bow shock

Separation bubble
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V. TURBULENT FREE-SHEAR LAYER MIXING

EXPERIMENTAL DATA OBTAINED IN SUPERSONIC FLOW WITH TURBULENT FREE-SHEAR

LAYERS SHOW TWO IMPORTANT PHENOMENA. IN THE NEAR FIELD (A LOW LENGTH

LESS THAN 25 BOUNDARY-LAYER THICKNESSES FROM THE SEPARATION POINT), THE

SPREADING ANGLE AND THUS THE MIXING RATE IS UNAFFECTED BY MACH NUMBER AS

SHOWN BY THE SOLID SYMBOLS. HOWEVER, IN THE FAR FIELD (MORE THAN 25

BOUNDARY-LAYER THICKNESSES FOR THE SEPARATION POINT), THE SPREADING

ANGLE AND THE MIXING RATE DECREASES RAPIDLY WITH INCREASING MACH NUMBER

AS SHOWN BY THE OPEN SYMBOLS.

SUPERSONIC FLOW DECREASES TURBULENT

FREE SHEAR LAYER MIXING

50 x Open > 25

40 - oo

20

1 h2 3 4 5 6 7 8
Mach Number



1 16

AT SUPERSONIC SPEEDS, EDDY SHOCKLETS FORM ABOUT THE TURBULENT EDDIES IN

THE FREE-SHEAR LAYER AS INDICATED BY A CFD SOLUTION USING THE DIRECT
SIMULATION TECHNIQUE. THE DENSITY CONTOURS SHOWN IN THE FIGURE CLEARLY

SHOW THE FORMATION OF SHOCKS ABOUT THE EDDIES. ONE THEORY IS THAT THESE

SHOCKS PREVENT COMUNICATION OF THE PRESSURE FIELD BETWEEN THE EDDIES AND

THUS PREVENT THE EDDIES FROM ROLLING UP AND MERGING AS THEY DO IN

SUBSONIC FLOWS.

WE WILL REVISIT THE SUBJET OF MIXING IN SEPARATED FREE-SHEAR LAYER FLOWS

LATER IN THIS PRESENTATION AS THE REDUCED MIXING WITH INCREASED MACH

NUMBERS IS A CRITICAL MATTER IN THE DESIGN OF SUPERSONIC COMBUSTION

RAMJET ENGINES (SCRAMJETS). METHODS TO ENHANCE THIS MIXING AT HIGH MACH

NUMBERS ARE NEEDED.

Direct-simulation for compressible flows

S.K. Lele Simulation of supersonic mixing layers

Density contours

P

0.0 1.0 2.0 3.0 4.0 $.0 9.0 7.0 6.0 1.1
x

A: M,=4.O, Mz= 2 ,+,MH
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VI. VORTEX FLOWS ENHANCE SUPERSONIC

VEHICLE PERFORNANCE

THE VORTEX FLAP (A CONCEPT WHICH HAS BEEN SUCCESSFULLY APPLIED AT

TRANSONIC SPEEDS) IS ONE OF THE SIMPLEST AND MOST STRAIGHT FORWARD

APPLICATIONS OF SEPARATED VORTEX FLOWS TO SUPERSONIC WING DESIGN.

STATED SIMPLY, THE CONCEPT EMPLOYES A SHARP LEADING EDGE TO GENERATE A

VORTEX OF MAXIMUM STRENGTH WHILE CONTAINING ITS INFLUENCE ON THE SURFACE

OF A DEFLECTED LEADING-EDGE FLAP.

THE FIRST SUPERSONIC EXPLORATION OF THE VORTEX FLAP WAS PERFORMED ON A

750 DELTA WING. RESULTS FOR M = 1.7 AND = 4.50 ARE SHOWN IN THE

FIGURE FOR FLAP DEFLECTIONS OF S0 AND 100. THE SURFACE TUFT PHOTOGRAPHS

IN THE CENTER OF THE FIGURE CLEARLY INDICATE THAT THE VORTEX INFLUENCE

IS CONFINED TO THE FLAP FOR A FLAP DEFLECTED 50 BUT EXTENDS WELL INBOARD

OF THE FLAP DEFLECTD 100. THE LATTER SITUATION IS APPARENTLY CAUSED BY

HINGELINE SEPARATION WHICH WAS FOUND TO BE MUCH MORE A PROBLEM AT

SUPERSONIC SPEEDS THAN AT TRANSONIC SPEEDS. THE SPANWISE PRESSURE

DISTRIBUTION SHOWS THE EXTREMELY LARGE INFLUENCE OF THE HINGELINE

SEPARATION AND MEASURED AERODYNAMIC FORCES (NOT SHOWN IN FIGURE) SHOWED

THAT A DEGRADATION IN PERFORMANCE ACCOMPANIED THIS SEPARATION.

SUPERSONIC VORTEX FLAP
75 Delta wh;g

M-1.70 a =4.e

-Hingone(K -I-u

HIlngelne separation

CP-.1

0 H
0 .2 .4 .6 .8 1.0

11

J __ _ _ _ __ _
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BECAUSE ATTACHED-FLOW WING DESIGN CONCEPTS EMPLOY WINGS WITH

CONSIDERABLE LEADING-EDGE RADIUS AND SEPARATED-FLOW CONCEPTS EMPLOY

WINGS WITH SHARP LEADING EDGES, CONCEPTS WHICH COMBINE BOTH TYPES OF

FLOW REQUIRE THAT THE MECHAISMS WHICH DETERMINE THE ONSET OF SEPARATION

BE UNDERSTOOD. To ACCOMPLISH THIS AN EXPERIMENTAL/COMPUTATIONAL STUDY

OF INCIPIENT SEPARATION WAS INITIATED AND TYPICAL COMPUTATIONAL RESULTS

ARE SHOWN IN THE FIGURE. COMPUTED CROSSFLOW MACH NUMBER CONTOUR PLOTS

AND SPANWISE SURFACE-PRESSURE DISTRIBUTIONS ARE SHOWN AT M = 1.6 FOR A
650 DELTA WING WITH VARYING AMOUNTS OF LEADING-EDGE RADIUS AND CAMBER.

THE ALPHA = 40 RESULTS SHOW THAT LEADING-EDGE SEPARATION IS PRESENT FOR
THE SHARP LEADING EDGE, BUT THE ROUND LEADING-EDGE PRODUCES ATTACHED

FLOW. WHEN THE ANGLE OF ATTACK IS INCREASED TO 80, THE FLOW IS

SEPARATED FOR THE ROUND LEADING EDGE AND A SPANWISE CAMBER OF 100 IS

REQUIRED TO MAINTAIN ATTACHED FLOW AT ALPHA = 80.

IMPROVED UNDERSTANDING AND AN ABILITY TO PREDICT INCIPIENT SEPARATION AT

WING LEADING EDGES IS REQUIRED IN ORDER TO TAKE FULL ADVANTAGE OF

SUPERSONIC VORTEX FLAPS.

NINCIPIENT SEPARATION COMPUTATIONAL STUDY
M = 1.6, = 65, Re = 2.0x 106/ft

Turbulent Boundary Layer
Colored contour plots - Crossflow Mach number

Sharp Leading Edgem
: /' ' m ~unde Laing Edge I

Camber

' 100 Came

.5, .7 .8.9 1.0 . 3 / C .3
ylYLE .1P'1

"" . }.' .0 Zi " .6 . .8 .6 ,.0 '5[/
YfYLE Y/YLE .CPA -...

I.S " .6.7.'8 .9,.0I I Y/YLE
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A TEST WAS CONDUCTED ON A WIND-TUNNEL MODEL OF A FIGHTER-TYPE FOREBODY WITH CANOPY AND

STRAKES WITH SHARP LEADING EDGES TO DETERMINE THE AERODYNAMIC CHARACTERISTICS AT

SUPERSONIC SPEEDS. AERODYNAMIC PREDICTIONS WERE ALSO PERFORMED USING A RECENTLY DEVELOPED

EULER METHOD. As SHOWN IN THE FIGURE AT H = 1.8 AND A = 140, A STRONG VORTEX DEVELOPS ON

THE STRAKE LEADING EDGE.

THE RIGHT SIDE OF THE FIGURE SHOWS VAPOR-SCREEN PHOTOGRAPHS TAKEN ON THE LEESIDE OF TIE

MODEL LOOKING UPSTREAM. As INDICATED IN THE FIGURE, THE VAPOR SCREENS WERE AT STREAmWISE

STATIONS AT X = 15.0, 22.5, AND 30 INCHES. THE TOTAL LENGTH OF THE M-ODEL AS TESTED WAS

34.5 INCHES. CLEARLY SHOWN AT ALL THREE STATIONS IS A VORTEX FEEDING FROM THE STRAKE

LEADING EDGE. AN EMBEDDED SHOCK TERMINATING ON THE LEADING-EDGE VORTEX IS CLEARLY EVIDENT

AT LAST STATION, X - 30.0 INCHES.

THE LEFT SIDE OF THE FIGURE SHOWS A NUMERICAL REPRESENTATION OF THE FOREBODY/STRAKE ALSO

SHOWING THE LEESIDE AND LOOKING UPSTREAM. ENTROPY CONTOUnS COMPUTED BY THE EULER METHOD

ARE SHOWN FOR STREANWISE STATIONS CORRESPONDING TO THE VAPOR-SCREEN PHOTOGRAPHS. ENTROPY

GRADIENTS ARE DIRECTLY RELATED TO VORTICITY THROUGH THE FUNDAMENTAL THEOREM OF CROCCO AND

GIVE A CONVENIENT COMPUTATIONAL REPRESENTATION FOR VORTICIES WHEN DISPLAYED AS COLOR

CONTOURS.

IT IS SEEN FROM THE FIGURE THAT THE EULER METHOD ACCURATELY PREDICTED THE LEADING-EDGE

VORTICES. EXAMINATION OF CROSS-FLOW VELOCITY VECTOR AND SURFACE PRESSURES (NEITHER SHOWN

IN THE FIGURE) INDICATE THAT THE EMBEDDED CROSSFLOW SHOCK WAS ACCURATELY PREDICTED;

HOWEVER, THE SHOCK IS WEAK AND DOES NOT PRODUCE SIZABLE ENTROPY GRADIENTS.

EULER CODE PREDICTION FOR LEADING EDGE VORTEX FLOWS

c t with uncambered
(Entropy Experiment

(Vapor screen)
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THE SUPERSONIC LEESIDE VORTEX FLOW ABOUT AN ELLIPTIC CROSS-SECTION

CONFIGURATION ARE SHOWN FOR AN ANGLE OF ATTACK OF 200 AND ROLL ANGLES OF

00 AND 450 . THE FLOW FIELD SOLUTION WAS OBTAINED BY SOLVING REYNOLDS

AVERAGED NAVIER-STOKES EQUATIONS ON A GRID OF 33x51x57 (33 ALONG THE

BODY, 51 AROUND THE BODY, AND 57 POINTS NORMAL TO THE BODY). AT A ROLL

ANGLE OF 00 COLORED COMPUTER GRAPHICS FOR THE COMPUTED FLOWFIELD AT

THREE LONGITUDINAL STATIONS SHOW THE FORMATION OF A PAIR OF WELL DEFINED

SYMMETRICAL VORTICES IN THE LEEWARD FLOWFIELD. AT A ROLL ANGLE OF 450,

HOWEVER, THE COMPUTED FLOWFIELD OVER THE LEEWARD SURFACE OF THE BODY

SHOWS AN ASYMMETRIC VORTEX FORMATION WITH ONE VORTEX ATTACHED TO THE

BODY AND ONE DETACHED FROM THE BODY. THE HEIGHT OF THE DETACHED VORTEX

OFF THE BODY SURFACE INCREASES WITH INCREASING DISTANCE DOWNSTREAM.

SUCH AN ASYMMETRIC VORTEX FORMATION WOULD BE EXPECTED TO HAVE A LARGE

EFFECT ON THE BODY SURFACE LOADINGS. AS SHOWN ACROSS THE BOTTOM OF THE

FIGURE THE COMPUTED VORTEX FORMATIONS FOR BOTH ROLL ANGLES ARE IN GOOD

AGREEMENT WITH EXPERIMENTAL RESULTS OBTAINED FROM VAPOR SCREENS.

BODY VORTEX EFFECTS ON FLOW FIELD
Elliptic missile, Mo =125, a 200

Compar sns

tvier-Stoees
mputaione d
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THE EFFECTS OF THE BODY VORTICES ON THE SURFACE PRESSURE DISTRIBUTIONS

ARE SHOWN AT APPROXIMATELY 60% BODY LENGTH. AT A ROLL ANGLE OF 00 WHERE

AS SHOWN IN THE PREVIOUS SLIDE A PAIR OF SYMMETRIC VORTICES OCCURRED

OVER THE LEEWARD SURFACE, THE PRESSURE DISTRIBUTIONS SHOW SYMMETRICAL

SURFACE LOADINGS AROUND THE BODY. AT A ROLL ANGLE OF 450 WHERE

ASYMMETRIC VORTICES OCCURRED OVER THE LEEWARD SURFACE, THE PRESSURE

DISTRIBUTIONS SHOW A HIGHLY ASYMMETRIC LOADING OVER THE BODY SURFACE AND

IN PARTICULAR OVER THE LEEWARD SURFACE. VERY GOOD AGREEMENT IS SHOWN

BETWEEN THE EXPERIMENTAL AND THEORETICAL PRESSURE DISTRIBUTIONS.

BODY VORTEX EFFECTS ON SURFACE PRESSURES
Elliptic missile, M co = 2.5, a = 200

X/L = 0.6

0 Experimental data
Navier-Stokes Theory

,5[ 0° 0B =45 ° *

3-

Cp .1

0 120 240 360 0 120 240 360
0, deg 0, deg
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PREDICTION OF SOUND WAVES (OR NOISE) GENERATED BY SHOCK/VORTEX INTERACTION HAS A VARIETY

OF POTENTIAL APPLICATION SUCH AS THE DESIGN OF SUPERSONIC AND SUBSONIC JET ENGINES, DESIGN

OF HELICOPTER BLADES OPERATING IN SUPERCRITICAL RANGE, ETC. SEVERAL LINEAR THEORIES AND

SOME SHOCK-FITTED NUMERICAL TECHNIQUES HAVE BEEN USED IN THE PAST TO ANALYZE THE

SHOCK/VORTEX INTERACTION PROBLEM. HOWEVER, THESE METHODS CA1N BE USED ONLY IN CASES OF

WEAK INTERACTIONS. UNDER STRONG INTERACTION, WHERE THE SHOCK DEFORMS SIGNIFICANTLY (MAY

EVEN BRANCH INTO SEVERAL SHOCKS), NEITHER LINEAR THEORY NOR SHOCK-FITTER NUMERICAL METHODS

ARE APPLICABLE. FURTHERMORE, THESE METHODS ARE NOT READILY EXTENDABLE TO MORE PRACTICAL

THREE-DIMENSIONAL INTERACTIONS. IN THE PRESENT ANALYSIS, A SHOCK-CAPTURING METHOD IS USED

TO STUDY THE SHOCK/VORTEX INTERACTION. NONLINEAR EULER EQUATIONS ARE SOLVED IN

CONSERVATION FORM BY A SECOND-ORDER ACCURATE UPWIND METHOD. CALCULATIONS ARE MADE FOR A

SUFFICIENTLY STRONG INTERACTION TO CREATE SHOCK BIFURCATON.

SHOWN IS AN EXPERIMENTAL INTERFEROGRAM ALONG WITH A SCHEMATIC FOR SUCH AN INTERACTION.

THE EXPERIMENTAL EQUIPMENT IS A DOUBLE SIDE SHOCK TUBE. IN THE LEFT-HAND HIGH PRESSURE

SIDE, A WEAK SHOCK WAVE IS EXCITED BY THE BURSTING OF A DIAPHRAGM; THE WAVE PRODUCES A

STARTING VORTEX AT THE TRAILING EDGE OF A MODEL IN THE TEST CHAMBER. THE INTERACTING

SHOCK WAVE IS GENERATED BY THE RIGHT-HAND HIGH PRESSURE PART AND RUNS FROM RIGHT TO LEFT

INTO THE PRECEDING VORTEX FIELD.

THE INTERFEROGRAM SHOWS THE FLOW FIELD AFTER THE SHOCK HAS INTERACTED WITH THE VORTEX.

THE SCHEMATIC OF THE FLOW FIELD IS SHOWN ON THE SIDE. THE INTERACTING POINT A BETWEEN THE
SHOCK FRONT (1) AND NOISE WAVE FRONT (4) AS WELL AS THE CONTACT POINT B BETWEEN THE FRONTS
(5) AND (3) DO NOT COINCIDE; BUT THERE IS A FRONT SECTION AB WHICH ENLARGES WITH TIME. AC

AND BC FORM THE CONTACT DISCONTINUIT.ES.

EXPERIMENTAL STUDY OF STRONG SHOCK VORTEX INTERACTION

INTERFEROGRAM SCHEMAnC

. . ..,-
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FLOW MACH NUMBER AND VALUES OF VARIOUS PARAMETERS IN THE VORTEX MODEL

ARE LISTED ON THE FIGURE. THIS FIGURE ALSO SHOWS THE PRESSURE CONTOURS

AS THE VORTEX MOVES DOWNSTREAM AND INTERACTS WITH THE SHOCK. THE

CONTOURS AT T = 110 SHOW PRIMARY SHOCK, THE SECONDARY SHOCKS, AND THE
TRIPLE POINTS WHICH ARE IN CLOSE AGREEMENT WITH THE EXPERIMENTALLY

OBSERVED FEATURES SHOWN ON PREVIOUS SLIDE FOR THIS TYPE OF INTERACTION.

WORK IS IN PROGRESS TO PREDICT THE ACOUSTIC NOISE GENERATED IN THIS

INTERACTION. EVEN THOUGH THE PRESENT ANALYSIS HAS BEEN ABLE TO PREDICT

THE COMPLICATED FLOW WELL IN QUALITATIVE SENSE, ASSESSMENTS HAVE TO BE

MADE TO FIND OUT WHETHER THE PRESENT SECOND-ORDER METHOD IS ADEQUATE OR

HIGHER-ORDER METHODS ARE REQUIRED FOR QUANTIFICATION OF THE PHYSICS.

PRESSURE CONTOURS FOR STRONG VORTEX INTERACTION
(MACH NO. ml.1, K 3.07, n = .0115, rc =.075, uc =.3)

Pressure T = 10 Pressure T = 30 Pressure T =50

Pressure T = 70 Pressure T = 90, Pressure T = 100
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ViI. TEC H ILOGY FOR AI RBREATHI NG

F LIGHT TO ORBIT

THE ENERGY AN OBJECT MUST HAVE TO BE IN A CIRCULAR ORBIT ABOUT THE EARTH

IS COMPRISED OF TW4O PARTS: KINETIC ENERGY AND POTENTIAL ENERGY. ON A

SPECIFIC ENERGY OR ENERGY PER UNIT MASS BASIS, THE POTENTIAL ENERGY FOR

AN ORBIT AT 500,000 FEET ALTITUDE IS ONLY ABOUT 5 PERCENT OF THE KINETIC

ENERGY. THUS, THE ENERGY AN ORBITAL VEHICLE MUST HAVE IS ABOUT ALL

KINETIC. KINETIC ENERGY VARIES WITH THE SQUARE OF THE SPEED OR WITH THE

SQUARE OF THE MACH NUMBER SO THE AMOUNT OF WORK DONE ON THE ORBITAL MASS

IS MUCH MORE AT THE HIGHER SPEEDS.

CONSIDER T H ENHFRGY A VE HICLE MUST HAVT

TO G T TO OR IT..L

E - KIfEI1. ENERGY + POTENTIAL EERGY

V2

2

E 3.38 x108  FT2  
+ O.61 x 108 F

_
2

SEC2  SEC2

TOTE:
1. 1HE EERGY A VEHICLE MST HATE TO OBTAIN RBIT IS VIRTUALLY

ALL KINETIC ENERGY

2. KINETIC ENERGY IS DIRECTLY PROPORTIONAL TO V2 OR

AT MACH 8, A VEHICLE HAS ABOUT 10 PERCENT OF THE SPECIFIC ENERGY (ENERGY

PER POUND) REQUIRED FOR ORBIT AND AT MACH 15 IT HAS ABOUT 36 PERCENT OF

THE SPECIFIC ENERGY REQUIRED FOR ORBIT.

REQUIRED ENERGY IS DIRECTLY PROPORTOA TO M2

At M, 8:" - 0.10

* 90% of the .nergy must be acquhd above MACH 8

At M- 15: k25) 0.36

* 213 of the energy must be acquied Wao MACH 15
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FOR AN AIRPLANE AT CRUISE WHERE ITS THRUST EXACTLY EQUALS DRAG, THERE IS

NO CHANGE IN KINETIC ENERGY. No USEFUL WORK IS DONE AND ALL OF THE

ENERGY OF THE BURNED FUEL IS LEFT BEHIND IN THE ATMOSPHERE IN THE FORM

OF HEAT.

CONSIDER AN AIRPLANE

I ENGINE TIRUST DEPEDS ON ATMIOSPHERIC IESITY

I VEHICLE DRAG EPENDS ON ATI10SPHERIC DENSITY

I N0 CHANGE IN KINETIC ENERGY

I FOR CRUISE: T -D

* LL TIE ENERGY CF THE FUEL IS LEFT BEHIND
IN THE ATIIOSPHERE AS HEAT

THE THRUST OF A ROCKET IS ALMOST INDEPENDENT OF ATMOSPHERIC DENSITY YET

THE DRAG OF A ROCKET-POWERED VEHICLE IS DIRECTLY PROPORTIONAL TO THE

ATMOSPHERIC DENSITY. THEREFORE TO LEAVE AS LITTLE ENERGY BEHIND AS HEAT

IN THE ATMOSPHERE AS POSSIBLE, A ROCKET-POWERED SPACE LAUNCH VEHICLE

SHOULD CLIMB TO HIGH ALTITUDES BEFORE REACHING HIGH SPEEDS; MORE OF THE

ENERGY OF THE ROCKETS FUEL CAN BE CONVERTED TO VEHICLE KINETIC ENERGY.

CSIDER A ROCKET LAUNCH VEHICLE

I ROCKET THRUST IS INDEPENDENT CF AP OSPHERIC DENSITY

* VEHICLE DRAG EPENDS ON ATIOSPERIC DENSITY

* HUGE CHANGE IN KINETIC ENERGY IS REQUIRED

* THE ROCKET VEHICLE WANTS TO LEAVE AS LITTLE ENERGY BEHIND
IN THE ATIIMPIERE AS POSSIBLE

* THE ROCKET XANTS TO Go UP OUT CF TIE ATOSPERE BEFORE
ACCELERATING 10 HIGH SPEED

FOR AN AERO-SPACE PLANE OR AN AIBREATHING VEHICLE THAT IS TO ACCELERATE

TO ORBITAL SPEEDS, BOTH THE ENGINE THRUST AND THE VEHICLE DRAG VARY

DIRECTLY WITH ATMOSPHERIC DENSITY. IN FACT, FOR A SCRAMJET-POWERED

VEHICLE, THE THRUST MINUS DRAG IS LESS AT HIGHER DENSITY. THEREFORE, AN

AIRBREATHING LAUNCH VEHICLE, TO MINIMXZE FUEL USE, SHOULD ACCELERATE TO

HIGH VELOCITIES WELL WITHIN THE ATMOSPHERE. WHAT IS THE BEST WAY TO DO

THIS AND MINIMIZE THE AMOUNT OF ENERGY LEFT BEHIND IN THE ATMOSPHERE AS

HEAT? WHAT ARE THE IMPORTANT GOVERNING PARAMETERS?
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CONSIFR THE MBOSPACE PLANE

I ENGIE TUST CEPENDS 00 AThOSPIERIC DENSITY

I VEHICLE DRAG DEPENIDS OK AThOSFFEIC DENSITY

0 WECHkNGE IN KINETIC E EGY IS REOUIRED

I IT IfUST ACtELERTAE kL WITHIN TrE ATMFSPHEAE TO VERY HIGH SPEED

Ir IIUST ALSO HIINIZE TIE NOXT OF ENERGY LEFT BEHIND
IN THE ATMOSRE AS HEAT

What Is required to do this?

What are the govemning parameters?

A VERY SIMPLE APPROXIMATE ANALYSIS CAN BE MADE BY WRITING NEWTON'S
EQUATION OF MOTION IN TERMS OF SPECIFIC ENERGY.

SIMPLE ANALYSIS FOR

SINGLE-STAGE-TO-ORIIT

IF THE EQUATION:

F-a A

IS WRITTEN IN TERMS OF SPECIFIC ENERGY, THE KEY GOVERNING PARAMETERS
BECOME ORVIOUS AND THE EQUATION CAN BE EXPRESSED AS A PERFECT
DIFFERENTIAL AND INTEGRATED IN CLOSED FORM ASSUNING AVERAGE (OVER THE
SPECIFIC ENERGY RANGE) VALUES OF THE KEY PARAMETERS.

BY SUMMING THE FORCES ALONG THE FLIGHT PATH, AN EQUATION IS OBTAINED IN

WHICH THE LEFT SIDE IS THE POWER AVAILABLE TO DO WORK ON THE VEHICLE AND

THE RIGHT SIDE IS THE RATE OF CHANGE OF THE SPECIFIC ENERGY OF THE

VEHICLE.
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SIMPLE ENERGY ANALYSIS
,LT

T

D

w W, in 7

Summing forces along the flight path gives:
Thrust - Drag - Weight Component = Internal Force

T - D -Wsin 7= n dv
dt

From Which
VT ( l
m T) dt 2

TPower available TRate of Change
to do work on of Vehicles
the vehicle Specific Er rgy

THE EQUATION OF THE PREVIOUS FIGURE CAN BE EXPRESSED IN TERMS OF PERFECT

DIFFERENTIALS AND INTEGRATED IN CLOSED FORM IF ONE ASSUMES THAT THE

PARAMETERS THRUST TO DRAG RATIO (T/D) AND OVERALL PROPULSIVE

EFFICIENCY (7 l ARE BOTH INVARIENT WITH RESPECT TO

SPECIFIC ENERGY.

FOR ROCKET-POWERED VEHICLES IT IS NORMAL TO ASSUME THAT THE SPECIFIC

IMPULSE IS CONSTANT; BUT, SINCE SPECIFIC IMPULSE OF AN AIRBREATHING

ENGINE VARIES WIDELY OVER THE SPEED RANGE FROM MACH 0 TO 25, IT WAS

THOUGHT TO BE MORE APPROPRIATE TO ASSUME A CONSTANT OVERALL PROPULSIVE

EFFICIENCY.

THE RESULT OF THIS SIMPLE APPROXIMATE ANALYSIS IS THE EQUATION SHOWN.

SIMPLE ENERGY ANALYSIS (Continued)

I a constant average value over the specific energy is assumed
for propulsion efficiency and thrust, to. drag ratio,
then the equation can be solved

-1 
2

MF 2~g 0

WT 1 Q ( 1- D/T)
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RESULTS OF ANALYSIS

I THE THREE GOVERNIN6 PARAMETERS THAT RESULT FROM THIS ANALYSIS AME

(1) OVERALL PROPISIVE EFFICIENCY: 71p

(2) TIMUST 10 DRAG RATIO: T/D

(3) FUEL WEIGHT FRACTION: k

THIS FIGURE SHOWS THE VARIATION IN FUEL WEIGHT FRACTION (RATIO OF THE

TOTAL WEIGHT OF FUEL TO THE TOTAL TAKE-OFF WEIGHT) WITH THRUST-TO-DRAG

RATIO AND OVERALL PROPULSIVE EFFICIENCY. A HIGH FRACTION OF TOTAL )-AKE-

OFF WEIGHT MUST BE FUEL. FOR A PROPULSIVE EFFICIENCY OF 0.4 AND THRUST-

TO-DRAG RATIO OF 3 ABOUT 65 PERCENT OF THE TAKE-OFF WEIGHT MUST BE FUEL.

GOVERNING PARAMETERS
FOR SINGLE STAGE-TO-ORBIT

Vo = 26000 ft/sec, ho = 500 000 ft2

1.0 0= 51600 BTU/lb, qo = 1000 lb/ft2

.2

.4

.6

" -. 1.0

0 1.5 2 3 4 5 678910 20 30 405060 80100
T/D

THE DENSITY AND HEAT OF COMBUSTION OF TWO ROCKET PROPELLANTS, AMONIA-

LIQUID OXYGEN AND HYDROGEN-LIQUID OXYGEN, AND TWO AIRBREATHER FUELS,

JP-4 AND LIQUID HYDROGEN, ARE COMPARED IN THIS TABLE. THE DENSITY AND

HEAT OF COMBUSTION ARE BASED ON THE VALUES OF BOTH PROPELLANTS FOR THE

ROCKETS AND ON THE VALUES OF THE FUELS ALONE FOR THE AIRBREATHERS. OF

COURSE, ROCKET PROPELLANTS AND JP-4 ARE MUCH MORE DENSE THAN LXQUID
HYDROGEN SO IT IS EASIER TO DESIGN A ROCKET VEHICLE OR A JP-4 FUELED
AIRCRAFT HAVING A HIGH FUEL WEIGHT FRACTION; BUT THERE IS ALSO MUCH LESS

SPECIFIC ENERGY AVAILABLE.

LIQUID HYDROGEN IS SOMEWHAT UNIQUE IN THAT IT HAS ALMOST THREE TIMES THE

SPECIFIC ENERGY OF M.OST CONVENTIONAL AIRBREATHING FUELS. HOWEVER, IT IS

ALSO UNIQUE IN ITS VERY LOW DENSITY. A MUCH LARGER VOLUME IS REQUIRED

TO CARRY THE SAME AMOUNT OF ENERGY WITH LIQUID HYDROGEN THAN FOR JP-4.

THIS LARGE VOLUME TAKES MORE STRUCTURE TO HOLD IT AND THUS MORE

STRUCTURAL WEIGHT AND ALSO RESULTS IN HIGHER VEHICLE DRAG.
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PROPERTIES Q PROPELLAITS

ROCKETS AIRBREATlERS

PROPERTY 1013 " 02 12 -02  JPt LH2

DENSITY, LB/FT3  55.62 26.25 58.39 4,0

IIEAT OF COMlBUSTION. B1I/LB 2650 5700 18,1700 51.600

IEAT OF COIBUSTION. BTU/FT3  lt7,393 149,625 1,101.245 727.040

SPECIFIC ENERGY. FT2/SFC2  0.66 X 108 1.,3 X 108 '.69 X 108 12.93 X 108

BASED ON THE SIMPLE ANALYSIS DISCUSSED PREVIOUSLY, THE MAXIMUM

ATTAINABLE VELOCITY WITH THE FOUR PROPELLANTS OF THE PREVIOUS CHART ARE

SHOWN AS A FUNCTION OF FUEL WEIGHT FRACTION FOR INFINITE THRUST-TO-DRAG

RATIO. THE TOP OF EACH BAND REPRESEW;iTS 0.3 AND THE BOTTOM
REPRESEN. 0o.f.

IT IS CLEARLY DIFFICULT TO REACH ORBITAL VELOCITY WITH A ROCKET HAVING A

PROPULSIVE EFFICIENCY OF 0.4 OR LESS. IT IS PROBABLY SAFE TO SAY THAT

ONLY HYDROGEN FUEL HAS ENOUGH SPECIFIC ENERGY TO PROVIDE ORBITAL

CAPABILITY IN A PRACTICAL SINGLE-STAGE, AIRBREATHING VEHICLE.

ALSO SHOWN ON THE FIGURE ARE TWO DATA POINTS FOR THE ACCELERATION OF THE

X-15. THE X-15 WAS PROPELLED BY AIR NH3 - 02 ROCKET, HAD A T/D OVER 5
AND AN7 BETWEEN 0.3 AND 0.4. THE LOWER DATA POINT WAS THE MAXIMUM

SPEED FLIGHT OF THE BASIC X-15 VEHICLE. THE HIGHER POINT WAS THE MACH

6.7 FLIGHT MADE USING EXTERNAL FUEL TANKS.

MAXIMUM ACHIEVABLE VELOCITY FOR VARIOUS PROPELLANTS
(TID = -)

Rockets

1-.~~~ . .4 .4.l9--0 .3

.7 - X. 5 }Alrbreathers

x.5 Jp .
.M .3

.. 4.)
.31

.2

.1

0
0 2 4 6 8 10 12 14 16 18 20 22 24 26

Velocity In 1000's of ft/sec
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VlI. 0ODELI NG THE FLOW IN SCRANJET
COMB USTORS

CONSIDERABLE RESEARCH HAS BEEN DONE AT NASA LANGLEY ON A HYDROGEN-FUELED
SCRAMJET ENGINE CONCEPT WHICH IS INTENDED TO OPERATE OVER SPEEDS FROM

MACH 4 TO MACH 10 WITH A FIXED GEOMETRY ENGINE. THIS CONCEPT USES

STRUTS WHICH ACT TO SHORTEN THE INLET AND ALSO SERVE AS IN-STREAM FUEL

INJECTORS. To PROVIDE A VARIABLE DISTRIBUTION OF HEAT RELEASE WITHIN
THE COMBUSTOR, TWO TYPES OF FUEL INJECTION ARE DISPLAYED. AT LOW MACH

NUMBERS, THE FUEL IS INJECTED PARALLEL TO THE FLOW FROM THE BASE OF THE

STRUTS AND MIXES AND REACTS SLOWLY WITH THE AIR. AS THE SPEED IS

INCREASED, FUEL IS ALSO INJECTED FROM THE SIDES OF THE STRUTS TO ACHIEVE

MORE RAPID MIXING. AT THE HIGHEST SPEEDS, IT IS DESIRABLE TO HAVE THE

FUEL AND AIR MIX AND REACT AS RAPIDLY AS POSSIBLE.

AIRFRAME-INTEGRATED SUPERSONIC COMBUSTION RAMJET

FOUWNiECTION STRUTS

INLET

COMOUSIOR

COWfL NOZZLE

CROSS SECTION OF STRUT RECION

A SCHEMATIC OF A SCRAMJET ENGINE MODEL PROBLEM IS SHOWN. INLET AIR

ENTERS THE ENGINE MODULE AT M = 5, T = 335 K, AND P = 0.035 ATM.
GASEOUS HYDROGEN FUEL IS INJECTED FROM FOUR FUEL INJECTORS LOCATED ON

THE STRUT SIDEWALLS AND ENGINE SIDEWALLS AT M = 1.05, T = 246 K, AND P =

2.5 ATM. THE FUEL INJECTORS ARE LOCATED 6 CM DOWNSTREAM OF THE ENGINE
MINIMUM. THE DIMENSIONS OF THE ENGINE MODULE ARE GIVEN ON THE SLIDE.

THE HYDROGEN FUEL AND AIR MIX DOWNSTREAM OF THE POINT OF INJECTION AND

REACT IN THE COMBUSTOR.

THE EXPECTED SHOCK STRUCTURE IN THE INLET AND COMBUSTOR IS ALSO

INDICATED ON THE FIGURE.
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SCHEMATIC OF SCRAMJET ENGINE PROBLEM

-58cm---d
78 cm

INLET AIR 5.03 335 K 3546 Pa
HYDROGEN 1.05 246 K 254824 Pa

THIS FIGURE SHOWS THE VELOCITY VECTOR FIELD IN THE ENGINE ONCE STEADY

STATE CONDITIONS HAVE BEEN REACHED. THE FLOW IS SEEN TO TURN THROUGH

SHOCKS FROM THE INLET LEADING EDGES AND THE STRUT LEADING EDGE. THESE

SHOCKS COALESE BEYOND THE STRUT LEADING EDGE AND REACH SUFFICIENT

STRENGTH TO SEPARATE THE BOUNDARY LAYERS ON THE ENGINE SIDEWALLS AS CAN

BE SEEN BY THE REVERSAL OF THE VELOCITY VECTORS. THE FLOW TAKES ON A

HIGHLY PARABOLIC CHARACTER IN THE EARLY PORTION OF THE COMBUSTOR. THE

STRONG JET INTERACTION REGION THAT OCCURS AT THE LOCATION OF FUEL

INJECTION CAN BE SEEN JUST BEYOND THAT POINT. THE FLOW AGAIN SEPARATES

ON EITHER SIDE OF THE FUEL INJECTORS PROVIDING LOCATIONS FOR

FLAMEHOLDING.

MAGNIFIED VELOCITY VECTOR FIELD IN ENGINE

- "'" INLET COMBUSTOR -

'I
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SHOWN ARE THE PRESSURE CONTOURS IN THE ENGINE. THE LEADING EDGE AND

STRUT SHOCKS CAN BE SEEN IN THE SLIDE. THE STRONG INTFAACIION REGION

CONTAINING INJECTOR BOW SHOCKS CAN ALSO BE SEEN.

COMPUTED STATIC PRESSURE CONTOURS IN ENGINE

THE TEMPERATURE RISE DUE TO CHEMICAL HEAT RELEASE CAN BE SEEN FROM THE

STATIC TEMPERATURE CONTOURS IN THE ENGINE. IT IS CLEAR IN THE

SIMULATION THAT THE FUEL IS NOT COMPLETELY MIXING WITH AIR IN THE

COMBUSTOR, RESULTING IN STRATIFIED REGIONS (MIXING LAYERS) OF ELEVATED

TEMPERATURE ASSOCIATED WITH EACH FUEL INJECTOR. PEAK TEMPERATURES OF

AROUND 2000 K ARE REACHED IN EACH MIXING LAYER.

COMPUTED STATIC TEMPERATURE CONTOURS IN ENGINE

TK

SIMILAR RESULTS CAN ALSO BE SEEN IN THIS FIGURE WHICH SHOWS THE WATER

MASS FRACTION DISTRIBUTION IN THE COMBUSTOR AS A RESULT OF CHEMICAL

* REACTION. CHEMICAL REACTION WAS MODELED IN THIS STUDY WITH EITHER AN

EQUILIBRIUM CHEMISTRY MODEL OR A 9 SPECIES, 18 REACTION FINITE RATE

CHEMISTRY MODEL. THE WATER DISTRIBUTION IS AGAIN STRATIFIED DUE TO

INCOMPLETE MIXING.

COMPUTED WATER CONTOURS IN ENGINE

oeWATER MA S S _

FRACTION, % --
.,- - ---LTCO BSO
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IN AN ATTEMPT TO IMPROVE MIXING, THE FUEL INJECTORS WERE MOVED UPSTREAM

4 CM TO ENHANCE THE FUEL-AIR INTERACTION. THE RESULTING VELOCITY VECTOR

FIELD 'JH THE ENGINE IS SHOWN. FUEL-AIR MIXING WAS SIGNIFICANTLY

IMPROVED, RESULTING IN CONSIDERABLY MORE HEAT RELEASE. THE INCREASED

HEAT RELEASE DROVE THE FLOW SUBSONIC AND CAUSED THE FORMATION OF NORMAL

SHOCKS AHEAD OF THE INJECTORS. THESE SHOCKS WERE NOT STABLE, AND THEY

PROPOGATED INTO THE INLET CAUSING AN INLET-COMBUSTOR INTERACTION. LARGE

SEPARATED REGIONS THEN FORMED IN THE INLET DENOERING AN UNACCEPTABLE

DESIGN.

WITHOUT CHEMICAL REACTION, THE COMBUSTOR DID NOT CHOKE. THEREFORE, THE

INLET-COMBUSTOR INTERACTION OCCURRED DUE TO THERMAL CHOKING RATHER THAN

AERODYNAMIC CHOKING.

COMPUTED VELOCITY VECTOR FIELD IN ENGINE
WITH CHOKED FLOW

'- -

do
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IX. AUGHENTATION OF NIXING IN SUPERSONIC

FREE-SHEAR LAYERS

MIXING AUGMENTATION

IN HIGH-SPEED SCRAMJET POWERED CONFIGURATIONS, ACHIEVING A HIGH MIXING

AND COMBUSTION EFFICIENCY IS PARTICULARLY DIFFICULT. THIS IS A

CONSEQUENCE OF THE FACT THAT WITH INCREASING VEHICLE MACH NUMBER, THE

AVERAGE MACH NUMBER IN THE COMBUSTOR ALSO INCREASES. AS THE COMBUSTOR

MACH NUMBER INCREASES, THE DEGREE OF FUEL AIR MIXING THAT CAN BE

ACHIEVED THROUGH NATURAL CONVECTIVE AND DIFFUSIVE PROCESSES IS REDUCED

LEADING TO AN OVERALL DECREASE IN COMBUSTION EFFICIENCY AND THRUST.

BECAUSE OF THIS, IT IS NECESSARY TO INVESTIGATE MIXING ENHANCEMENT

TECHNIQUES TO ACHIEVE INCREASED COMBUSTION EFFICIENCY. TECHNIQUES WHICH

MIGHT BE USED FOR MIXING AUGMENTATION ARE LISTED. OF THESE, SOME OF THE

TECHNIQUES HAVE BEEN STUDIED NUMERICALLY FOR TWO-DIMENSIONAL LOWS AND

RESULTS ARE DISCUSSED IN SUBSEQUENT VIEWGRAPHS.

TYPICAL TECHNIQUES FOR MIXING AUGMENTATION

0 PROVISION FOR INCREASED MIXING AREA, PARTICULARLY
THROUGH SPANWISE CONVOLUTIONS

0 IMPOSITION OF SWIRL OR LONGITUDINAL VORTEX MOTION

* COMBUSTOR DESIGN TO ENSURE TURBULENCE AUGMENTATION
RATHER THAN DAMPING DUE TO COMBUSTION

* OPERATION IN THE NEAR FIELD OF THE MIXING ZONE WHERE
INITIAL B.L. OR LOW Re NO. TURBULENCE STRUCTURES (AS
OPPOSED TO ASYMPTOTIC FREE-MIXING STRUCTURES) ARE
PRESENT

* INCREASED TURBULENCE PRODUCTION THROUGH PROVISION
FOR MULTIPLE INFLECTION POINTS

* CONTROL OF INITIAL SHEAR-LAYER DYNAMIC VORTICITY
PRODUCTION

* SHOCK INTERACTION
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MIXING ENHANCEMENT BY TEMPERATURE CONTROL

SHOWN IS A SCHEMATIC OF A SPATIALLY DEVELOPING MIXING LAYER. A SPLITTER

PLATE ON THE LEFT SEPARATES THE INITIAL FUEL (TOP) AND AIR (BOTTOM)

STREAMS. THE AIR STREAM IS PRESUMED AT REST, WHEREAS THE FUEL STREAM

HAS A SPECIFIED MACH NUMBER Mb . THE RATIO OF THE AIR TO FUEL

TEMPERATURES IS DENOTED BY fT A FREE SHEAR LAYER DEVELOPS
DOWNSTREAM OF THE SPLITTER PLATE. THIS, OF COURSE, IS UNSTABLE AND

LINEAR STABILITY THEORY CAN DESCRIBE THE INITIAL STAGES OF THE

INSTABILITY.

MACARAEG & STREETT HAVE PERFORMED A PARAMETRIC STUDY OF TH5 TEMPORAL

STABILITY OF THE SELF-SIMILAR, NON-REACTING MIXING LAYER. THE

COMPRESSIBLE LINEAR STABILITY EQUATIONS WERE SOLVED WITH A SPECTRAL

METHOD USING ON THE ORDER OF 100 POINTS.

y
Ul U(y;x)

injected

L(x)U 2

quiescell
Sketch or spatially developing mixing layer.

TYPICAL DEPENDENCIES OF THE GROWTH RATES, DENOTED BY 0-, UPON MACH

NUMBER, TEMPERATURE RATIO, AND REYNOLDS NUMBER RE ARE SHOWN. THE

DECREASE IN GROWTH RATE WITH INCREASING MACH NUMBER IS FAMILIAR AND

UNDERLIES THE NECESSITY 0 INCREASIHG THE MIXING AT HIGHER SPEEDS. THE

MODEST DEPENDENCE OF THE GROWTH RATE UPON REYNOLDS NUMBER REFLECTS THE

ESSENTIALLY INVISCID CHARACTER OF THE INSTABILITY. THE STRONG

DEPENDENCE OF THE GROWTH RATE UPON THE TEMPERATURE RATIO SUGGESTS THAT

MIXING CAN BE ENHANCED BY PROPER TUNING OF THE FUEL TEMPERATURE.

FORTUNATELY, THE GREATER INSTABILITY OF THE SHEAR LAYER WITH DECREASING

FUEL TEMPERATURE IS FAVORABLE TO HYPERSONIC COMBUSTORS: THE AIR

ENTERING THE COMBUSTOR WILL BE VERY HOT AND THE FUEL CAN BE RELATIVELY

COLD.
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SHEAR LAYER LINEAR INSTABILITY

Pt- 5 CO- I We NOT CA%

pr- I~ (COCA%
A~O 7. ill), Wife1. COLD, CAII

30* U..t

24 
-- U.,

g~owl ..... gfown.
rte .1'4 /f~tS .

I * A It to to 84 of is II l
Wav nub wave wiber

'Sf

oloWth A ....
rate 14

I ol jS* .9* ." .9 A1 is 45 0

wave number

THIS FIGURE SHOWS THE RESULTS OF A CFD SOLUTION OF A MIXING AND REACTING

FLOW OF HYDROGEN AND AIR. THE TWO GASES ARE ESSENTIALLY SEPARATED BY A

THIN PLATE AND THEN TO MIX AND REACT ALONG THE FREE SHEAR LAYER THAT

FOLLOWS. THE COLORS INDICATE THE AMOUNT OF WATER VAPORS PRESENT IN THE

FLOW AND THUS SHOW THE DEGREE OF MIXING ACHIEVED WITH THE RED COLOR

INDICATING PRESSURE OF A SIGNIFICANT AMOUNT OF WATER. COMPARE THE VERY

SLOW MIXING SHOWN FOR THIS FLOW WITH THAT IN THE NEXT FEW FIGURES.

u 1729 rn/s
2000K_______

.M N :A



1-37

IN THIS CASE, TWO STATIONARY OBLIQUE SHOCK WAVES ARE POSITIONED SO THAT

THEY CROSS IN THE CENTER OF THE SEPARATED FREE SHEAR LAYER JUST

DOWNSTREAM OF THE PLATE. NOTE THAT MIXING AND REACTING ARE ONLY

SLIGHTLY ENHANCED BY THE SHOCKS.

REACTING MIXING LAYER 2

IN THIS CASE, A VERY SMALL BLUNT BODY IS POSITIONEU JUST DOWNSTREAM OF

THE PLATE AND CAUSES A STRONGLY CURVED SHOCK IN THE FREE-SHEAR MIXING

LAYER. THIS CURVED BOW SHOCK PRODUCES VORTICITY AND GREATLY IMPROVES

MIXING OF THE TWO FLOWS.

REACTING MIXINGLAYER 3

H2 MAS FACIN
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OF COURSE, LOCATING A BLUNT BODY IN THE MIXING AND REACTING FLOW OF A

SCRAMJET COMBUSTOR IS NOT PRACTICAL. HOWEVER, THESE MIXING STUDY

RESULTS SUGGEST THAT A DIFFERENT FUEL INJECTOR ARRANGEMENT MIGHT IMPROVE

THE MIXING AND REACTION. PREVIOUSLY, THE PARALLEL AND PERPENDICULAR

FUEL INJECTORS WERE ARRANGED ON THE STRUTS AS SHOWN IN THE TOP LEFT OF

THE FIGURE. BY REARRANGING THESE FUEL INJECTORS AS SHOWN ON THE RIGHT,

THE FUEL FROM THE PARALLEL INJECTOR NOW FLOWS THROUGH THE CURVED BOW

SHOCK CREATED BY THE PERPENDICULAR INJECTOR. COMPARISON OF THE CFD

RESULTS FOR THESE TWO FLOWS SHOWS GREATLY INCREASED MIXING AND REACTION

FOR THE MODIFIED FUEL INJECTOR.

STRUT MODIFICATION FOR IMPROVED COMBUSTION -EFFICIENCY

Air H2  Ai H 2  2

'-t 2

Air Aur
Conventlonal strut Modfied Strut

Water mass actonI
Gtxivcnlrz'al Strut ______________________

Water mass fra ton

Modfed Otut __________________________

PROPER INTEGRATION OF THE SCRANJET ENGINE WITH THE AIRFRAME IS REQUIRED

TO OBTAIN THE HIGH THRUST-TO-DRAG RATIOS DESIRED AT HIGH SPEEDS.

ANALYZING THIS COMPLEX FLOW REQUIRED CALCULATIONS OF THE FOREBODY FLOW

ENTERING THE INLET, THE SPILLAGE FROM THE MULTIPLE INLET MODULE AND THE

EXTERNAL NOZZLE FLOW.
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SHYPERSONIC ENGINE/AIRFRAME INTEGRATION

THIS FIGURE SHOWS LAMINAR FLOW PAST A HYPERSONIC LIFTING BODY AT MACH

19.2, ZERO ANGLE OF ATTACK, AND A UNIT REYNOLDS NUMBER OF 30,000/IN.

THE CALCULATIONS ARE MADE USING AN UPWIND THIN-LAYER-NAVIER-STOKES CODE

ON A GRID OF (45x65x65) UNDER EQUILIBRIUM AIR ASSUMPTION. THE FIGURE

SHOWS TEMPERATURE CONTOURS AT 4 CROSS SECTIONS. THICKENING OF BOUNDARY

LAYER IN THE LOWER SYMMETRY PLANE IS OBVIOUS FROM THIS FIGURE. THIS IS

NOT A DESIRABLE FEATURE OF THE FOREBODY FLOW SINCE THE FLOW ON THE LOWER

SURFACE IS CAPTURED BY THE SCRAMJET INLETS.

.S - IIIIG'lOlY

OU
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A THREE-MODULE SCRAMJET INLET CONFIGURATION IS SHOWN IN THIS FIGURE. IT

HAS SWEPT SIDEWALL COMPRESSION SURFACES WITH SWEEP ANGLE OF 300 AND

COMPRESSION ANGLE OF 100. ALTHOUGH NOT SHOWN IN THE FIGURE, THE COWL

CLOSURE STARTS AT THE THROAT. CALCULATIONS HAVE BEEN MADE FOR A MACH 4

TURBULENT FLOW THROUGH THESE INLETS USING A 3-1 NAVIER-STOKES CODE.

IMultiple module inlet

A GRID OF APPROXIMATELY 330,000 POINTS IS USED IN THE ANALYSIS FOR HALF

OF THE CONFIGURATION. YHE FLOW IS CALCULATED FOR ZERO ANGLE OF ATTACK

AND A GEOMETRIC CONTRACTION RATIO OF 4. SHOWN IN THE FIGURE ARE THE

PARTICLE TRACES IN THE SYMMETRY PLANE OF THE CENTER MODULE. THIS FIGURE

CLEARLY SHOWS THE SPILLAGE OF THE FLOW FROM THE INLET DUE TO SWEPT

COMPRESSION SURFACES AND INTERACTION BETWEEN THE HIGH-PRESSURE INTERNAL

FLOW AND THE LOW-PRESSURE EXTERNAL FLOW. THIS INTERACTION IS CAUSED BY

THE AFT PLACEMENT OF THE COWL ON THE UNDERSURFACE OF THE MODULES.
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Particle traces at mach 41

VALIDATION OF THE ENGINE-INSTALLED PERFORMANCE OF A SCRAMJET POWERED

AIRCRAFT IN CONVENTIONAL AERODYNAMIC WIND TUNNELS CAN BEST BE DONE BY

SIMULATION OF THE ENGINE EXHAUST WITH A SUBSTITUTE GAS. THE PROPER

INVISCID SIMULATION OF SCRAMJET EXHAUST EFFECTS REQUIRES THE MATCHING OF

COMBUSTOR EXIT (OR NOZZLE ENTRANCE) MACH NUMBER, STATIC PRESSURE,

AND Y , THE RATIO OF SPECIFIC HEATS. THE ACTUAL CHEMISTRY OF THE

SCRAMJET EXHAUST IS NOT A FIRST ORDER EFFECT FOR THIS APPLICATION. THE

COMBUSTOR EXIT MACH NUMBER AND STATIC PRESSURE CAN BE MATCHED WITH AIR,

BUT THE ar OF A SCRAMJET EXHAUST IS SIGNIFICANTLY DIFFERENT FROM THAT OF

AIR.

THE BASIC CONCEPT OF A COLD GAS SIMULATION OF THE SCRAMJET EXHAUST IS

ILLUSTRATED IN THE FIGURE. THE RANGE OF Y FOR A SCRAMJET EXHAUST AT

MACH 8 IS PLOTTED VERSUS THE TEMPERATURE OF THE GAS. A SIMILAR PLOT FOR
A PARTICULAR ARGON-FREON MIXTURE IS ALSO SHOWN. THE ENTIRE RANGE OF

FOR THE SCRAMJET EXHAUST CAN BE MATCHED BY THE INERT GAS AT A

TEMPERATURE THAT IS 5-10 TIMES LOWER THAN THAT OF THE SCRAMJET

EXHAUST. THE INERT GAS IS ALSO SAFER AND MORE PRACTICAL FOR USE IN WIND

TUNNELS THAN ARE COMBUSTION PRODUCTS.
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SUBSTITUTE-GAS ENGINE EXHAUST
SIMULATION CONCEPT (U)

70% F13131 + 30% Ar
....- ..- .......- - - -Range of

1.3----- for mnatching to
Scralotexhust scramjet exhaust

1.2 equilibrium)-" a 8fih--------------------------. condition

1.1 I I 
0 200 400 . 600 800 1000

T K,
1000 1400 1800 2200'2600

(For Scramiet exhaust gas only)
Unclassified

THE GRUMMAN DETONATION TUBE WAS USED TO EXPERIMENTALLY VERIFY THE COLD

GAS SIMULATION TECHNIQUE. THIS FACILITY CAN OPERATE AT FLIGHT REYNOLDS

NUMBER AND ENTHALPY VALUES IN THE h.CH NUMBER RNGE BETWEEN 4 AND 10. A

SMALL RECTANGULAR NOZZLE WAS PLACE.D IN THE TEST SECTION TO CREATE THE

FLOW CONDITIONS THAT WOULD BE FOUNa AT THE EXIT OF A SCRAMJET COMBUSTOR.

DETONATION TUBE TECHNIQUE FOR SIMULIT ING SCRAMJET EXHAUST

01,V"4Dh SCALE MOE - INOWS

BITER T1JSB DAI . EN TUBE

VAM MMER 6 I.CIAMETER

rAXI4UM TESTING TIME (5 KIS)

/ % GAS SIMiULATING SCRAJET
- A x R. EAAJED ws STAGiLATIOG PROPERTIES

0 flUNS
5  

.TOTAL ENTHALP'Y

/NZ CHOElIICAL CGIBSTITUENCY
/NUE USABC w lZLE-FW(1 SINUIAT1I0I

FItIITE-RAIE CHEIUISTRY
N2 Ad 2 ,N~A .FULL-SCALE RE

DISTANCE-
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P HO0TO O0F MO0D EL I N D ETO0N A TIO0N T U BE

SCALE 2-D SCMRAJFT 4OZZLE)
tIODEL III DETO0AT I04 TUBE

VACUUM CIIAMER

TESTS MADE IN THE DETONATION TUBE WITH 
HOT HYDROGEN-AIR COMBUSTION

PRODUCTS AND C.JL ARGON-FREON SUBSTITUTE 
GAS MIXTURES HAVE VALIDATED THE

USE OF SUBSTITUTE GAS AS A WAY TO SIMULATE 
AN OPERATING SCRAMJET ENGINE

IN CONVENTIONAL WIND TUNNEL TESTS.

NOZZ~LE PRESSUIJR! D)ITRIBUTIONS WITHl AND WITH~OUT SHOCKS3

10No SPIOCKS 
W~ITHI SHiOCKS

0 CONBU57ION GA 0 COMIBUSTION GAS

.- 2DNOCC

.2Fl

a 402 I O 2 M z

o~ ~ y )(/y3 o 8 t j~e



A COMPARISON OF AIR AND FREON-ARGON AS THE SIMULANT GAS

THE SINULANT GAS NOZZLE EXPERIMENT WAS RECENTLY TESTED IN THE LANGLEY 20-INCH MACH 6
TUNNEL USING AIR AS THE SCRAHJET EXHAUST SIMULANT GAS. THIS TEST WAS FOR THE PURPOSE OF

REQUALIFYING THE SIMULANT GAS SUPPLY SYSTEM AND TO PROVIDE EXPERIMENTAL DATA FOR CFD
VALIDATION. THIS DATA CAN BE USED , HOWEVER, TO ILLUSTRATE THE DIFFERENCE IN THE NOZZLE

FLOWFZELD THAT OCCUR DUE TO .

A SKETCH OF TIlE TEST ARTICLE IS SHOWN. THE WIND-TUNNEL REYNOLDS NUMBER IS ABOUT 7X106/FT
AT MACH 6 FOR A STAGNATION PRESSURE OF 365 PSIA AND A STAGNATION TEMPERATURE OF 4000 F.
THE CONDITIONS OF THE SIMULANT GAS AT THE COMBUSTOR EXIT ARE MACH 1.70 AND 1.23.

FOUR CASES ARE PRESENTED IN THE FORCE AND MOMENT COMPARISON BELOW. FENCE-ON AND FENCE-OFF

CASES ARE SHOWN FOR ARGON-FREON AND AIR. THE CROSS-HATCHED REGION INDICATES THE FORCE OR

MOMENT INCREMENT DUE TO THE ADDITIOH OF THE FLOW FENCE. ALL THE CASES ARE FOR 6 = 200.

THE PRESSURE FIELD AND THE CHARACTERISTIC LINES ARE A FUNCTION OF k , THE EFFECT OF WHICH

IS ILLUSTRATED BY THE INTEGRATED SURFACE PRESSURES ON THE EXTERNAL NOZZLE. THE MAGNITUDE

OF ALL THE PARAMETERS IS LARGER FOR THE FREON-ARGON SIMULANT GAS THAN FOR AIR. THIS TREND
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Abstract

This paper concerns with computational methods for the compressible Navier-Stokes equations -with
special consideration of hypersonic flows. In the first part the governing equations and relations for
equilibrium flow are described, and their basic numerical approaches, in particular for the Euler terms are
discussed. As a selected topic the application of the multigrid method to solutions of the Navier-Stokes
equations is considered. As a further topic the influence of the numerical damping on the numerical
solution of the conservation laws is discussed, and their influence on steady-state, and unsteady solutions
of the Navier-Stokes equations is demonstrated. The special numerical problems arising in hypersonic,
viscous flows are discussed by means of an upwind relaxation method , and modifications of the scheme
to overcome these problems will be presented. Conclusions will be drawn for the specific requirements of
hypersonic, viscous flows to the numerical methods.

1 Introduction

The computation of 3-D, supersonic flow around blunt bodies is of increasing interest for the development of
spacecrafts and hypersonic airplanes. The physical and numerical problems to be solved cover a wide range of
the fluid mechanics, ranging from rarefied gasdynamics, chemical non-equilibrium to problems of non-reactive,
continuum flow. Rarefaction and chemical effects are of great importance, in particular for reentry vehicles
and the consideration of that is of growing interest in the computational fluid dynamics. Nevertheless large
portions of the flight path are governed by continuum flow, in particular for hypersonic planes in the Mach
number-range of five-to ten, but also for reentry bodies in the lower atmosphere. An overlook about these
problems can be found e.g. in [1), (2).

The present paper concerns with the computation of viscous, hypersonic flow in the continuum flow regime.
The viscous flow is of great importance for the prediction of the flight properties, in particular for the prediction
of aerodynamical forces and heat flux rates. The vehicles considered are usually blunt bodies or planes with a
low aspect ratio, thus the flow is three-dimensional and strong viscous/inviscid interactions can appear. The
typical flow around blunt bodies is characterized by strong shock waves and expansions, embedded subsonic
regions, and shock-boundary layer interactions with separation. To attack such flow problems the Navier-
Stokes equations have to be solved. The numerical method required for such a problem must be powerful,
should be sufficient accurate-in viscous flow regions and should-have the properties of high resolution schemes
in the nearly inviscid flow portion.

From the numerical point of view an essential problem is to find in the structure of the Navier-Stokes
equations, which involves different characterisic scale length to be resolved numerically. This fact requires
much finer computational m~hes than needed-for the corresponding inviscid problem, and with that more
computer storage and computational work is required. Besides of an necessary increase of computer capacity,
the efficiency of numerical methods has to be improved. A close cooperation with the applied mathematics
is necessary to utilize al! the mathematical possibilities. A typical-example for that is-the developement of
the multigrid methods and their application to hyperbolic and parabolic problems, The multigrid method, an
useful concept for increasing the efficiency of numerical methods will be explained briefly is demonstrated by
some results.

Another aim in the developement Navier-Stokes solvers is the improvement of the accuracy of viscous
solutions, in particular for flows at high Reynolds numbers. In this case there is a very sensible balance between
inertia and viscous terms. Physically the inertia terms have no dissipative contribution, but their numerical
approximation generates a certain amount of numerical dissipation superposing the physical dissipation. Then
the accuracy of the solution can be impaired, in particular in viscous layers where strong gradients are present.
These-problems, important in every numerical solution will be discussed in one section.

The special numerical problems arising in hypersonic, viscous flows will be discussed in a further section,
and by means of an upwind relaxation method modifications of the scheme will be presented to reduce such
problems. Finally conclusions will be drawn for the specific requirements to the numerical- methods- for
hypersonic flow.

-~---~----- --- --- --- ----- - - ----- ~------- ------ ~ - - ---
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2 Governing Equations and Relations
From the gaskinetical point of view different flow ranges can be characterized by the Knudsen number Kn
,tile ratio of tle mean free path between the collision of two molecules, and of a characteristic macroscopic
(body) length. Thus the flows can range from the nearly collision-free molecular flow (Kn=O(1)) to the
collision-dominated continuum flow with Kn < 1. Tile latter is of interest in present consideration.

The governing equation for all these flow ranges is the Boltzmann equation, an integro-partial differential
equation for the molecular distribution function. However the complexity of this equation is high, and a more
general solution becomes very costly (eg. Monte Carlo methods).

For the most situations encountered at ordinary densities in gas dynamics the Knudsen number is very
small, the corresponding flows are continuum or near-continuum flows. Those the complexity of Boltzmann
equation can be reduced by expanding the equation with respect to small Knudsen numbers (Chapman-Enskog
expansion). By that a hierachy of flow equations can be derived with increasing order of Kn (e.g. see Vin-
centi,Kruger [3)). In this order it yields the Euler equations, the Navier-Stokes equations,-and the Burnett
equations. Equivalently, the hierachy describes the increasing deviation from the state of thermodynamical
(translational) equilibrium. In this sense the Euler equations of inviscid flow can be considered as the conser-
vation laws for thermodynamical equilibrium, whereas tile Navier-Stokes equations describe small deviations
from that. Both the Euler and Navier-Stokes equations are tile most important tools for predicting technical
relevant-flow problems. The Burnett equations, although higher order equations have shown only small, if any
improvement over the Navier-Stokes equations.

Theoretical and experimental investigations have shown that the Navier-Stokes equations describe suffi-
ciently well the flow even in the near-continuum flow range (not to far from continuum). These equations
although derived for nearly thermodynamical equilibrium are equally valid for flows with vibrational or chem-
ical non-equilibrium, however, provided the thermodynamical variables are given in their extented definition
appropriate tile non-equilibrium situation.

2.1 Conservation Laws

The conservation laws for the specific mass (density p),the momentum pV ,and the energy pE are formulated
as the rate of change of the consevative variables Q in the volume r balanced by the effect of the generalized
fluxes fl acting on the surfaceA. The-conservation laws in the integral form read:

j Qf dr + i fI -6dA =O (1)

The divergence form can be obtained by means of the integral theorem of Gauss:

Qt + V -H = 0 (2)
Herein Q is-the vector-of the conservative variables

Q = (p, p6, pE)T

The ger.eralized flux fl can be split into a term for inviscid flow flm and one describing the viscous flow
H,,.. The inviscid term yields:

fti". = (pF', p61+ pph) T

The viscous part is
f , = ( 0 , , . + T ) T

where O is the stress tensor, and is the heat flux vector.

2.2 -Equations- of State

The equations of state define the thermodynamical, and calorical variables as function of conservative flow
variables Q, for the assumption of thermodynamical equilibrium. The conservative quantity, the total energy
e = pE is connected with-the internal energy by e = pE = p(C + V2/2)

The internal energy c is expressed by the caloric equation of stat c = c(p, T) as function of two thermo-
dynamical variables, here p-and T.

For a thermally perfect gas, an assumption for moderate density and temperature (e.g. air T < 2000K)
the caloric equation reads e = c(T) -. fcvdT. The additional assumption of calorically perfect gas (e.g, air
t < 500) reduces the relation to = cT.

The thermal equaton of state defines -the pressure as function of two variables, e.g. of the internal energy
c, and of the density p:

p =p(P,)= z (p, ).pRTp, ) (3)

J.____________
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where Z(p,c) is the compressibility factor. For a thermally perfect gas, Z=l, it yields p = pRT, and in
addition for a calorically perfe,.t gas it is p = (7y- 1)pe.

With the equations of state, and with the thermodynamical laws the other quantities can be derived. For
example the speed of sound at constant entropy s = s(p, e) becomes:

dp .p Op pa 2 =  , = 1,+ , (4)

which reduces for a perfect gas to a2 = 7P/p = 7 RT.
In general the equations of state for a real, non-perfect gas cannot be formulated in a closed form. Then

the calculation of the state has to be carried out by an evaluation of the thermodynamical partition functions,
from which Mollier diagrams can be constructed. For computational purposes the diagrams are often used in
form of interpolation tables (e.g. Tannehill (4)).

2.3 Transport Quantities

Laminar flow requires the knowledge of the molecular- transport of momentum and energy. The mostly used
assumption for ordinary fluids is the linear relationship between shear stress and velkcity gradient, and between
heat flux and temperature gradient, which is in agreement with the gaskinetical consideration of the Navier-
Stokes equations. Then it is for example: r = and q = AgradT At moderate densities the

coefficients of viscos.y and heat conduction are usually functions of the temperature. For real multi-component
gases the coefficients become functions of two variables, e.g. p = p(p, e), and have to be evaluated by means
of mixing laws and the equations of state via the concentrations (see e.g. Bird, Stewart, Lightfoot (5)).

In turbulent flow the problem of closures is much more complicated than for laminar flow. Generally all
turbulent flow simulations suffer under the lack of the correct physical modelling. Therefore the mostly used
attempts are based on the Reynolds-averaged equations with any eddy viscosity assumption. Closures can be
achieved by additional transport equations, like the k - c model, or by algebraic relations,'like the mixing
length assumption. All of these assumptions need parameters to be adapted empirically to the special flow
problem. The most of these models are suited for boundary layer-like flows with small separation zones only
(which motivates the use of the thin layer approximation).

In Navier-Stokes computations an additional difficulty arises for the evaluation of the boundary layer
thickness, necessary for the scaling of the models. Therefore special turbulence models were derived for the
requirements of Navier-Stokes solutions. At present the mostly used model for that is the two-layer algebraic
model by Baldwin and Lomax (6].

2.4 Navier-Stokes Equations- and their Approximations

2.4.1 Navier-Stokes Equations

In the following discussion the conservation-equation will be refered to their formulation in a Cartesian system
(x,y,t) and the gas is assumed to be perfect. Then the Cartesian components of the flux vectors may be
Jth,v = (P ,G) T and/fl ,- (S, R)T. The integral form reads now

JQtdr+ A(F-S)dy-fA(G-IR)d =0 (5)

,and the corresponding divergence form gives

Q, + (F - S). + (G- R)v =0 (6)

Herein is

_ Pu F +p G = pvu S = r y
PV pv

2P+up + Ty
pE puH pvHt \ s4r4

where s4 = q_ + urx + vrx and r4 = qy + ur., + vry. With the Stokes jsumption Pv = -2/3 the stress
terms are expressed by Newtons assumption:

r=== 2pu+pV i r y= 2 juvy+pIk.V = p(+ Vz)

The components of the heat flux vector fare given by q, = M- and q,=A, .

a

-. - - - - - - -.--I- - . - - - - - - ~ - - ~ - - - . - - - . - - . . -.-.---.
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2.4.2 Thin Layer Approximation of the Navier-Stokes Equations

The thin layer approximation is a widely used approximation for the computation of viscous flows at high
Reynolds numbers. In comparison to the complete Navier-Stokes equations in this approximation all the
viscous terms with stream-wise derivatives are neglected in a similar way as done for the boundary layer
equations.llowever, in contrast to those the thin layer approximation retains all the terms of the Euler equa-
tions, and in consequence-the thin layer approximation preserves all the properties of the inviscid flow. Those
upwind influence in viscous layers is given by the characteristic spreading in subsonic regions similar to higher
order boundary layer concepts. For the equations in 2-D Cartesian coordinates, assuming the-x-coordinate as
the nearly streamwise direction, the thin layer approximation would- read

Q,+ + (e- )y = 0 (7)

where Q,F, and G have the meaning as before, but now the viscous term P contains only that stress terms
wich have derivatives in normal (y-) direction.

There exists no rigorous theory for the derivation of this approximation, however its range of validity can
be approximately considered to be the same as that of the higher order boundary layer theory. It means that
local flow separation and small normal pressure gradients in viscous layers are covered by the approximation

From the computational point of view further motivations using this approximation are given from the fact
that usually the step sizes in-streamwise direction are much larger than normal to it, and those even when
the complete equations are used the streamwise derivativies of the viscous terms are insufficiently resolved
Furtheron most of the turbulence models used are suited only for boundary layer-like flows.

An important requirement for the application of the- thin layer approximation is the use of streamline-
(surface)- orientated, orthogonal meshes to grasp completely the remaining main stress terms.

2.4.3 Parabolized Navier-Stokes Equations

The parabolized Navier-Stokes equations correspond to the thin layer approximation if applied-to steady-state,
supersonic flow. For the example of 2-D flow the parabolized equations would read:

F, + (G -R)y = 0 (8)

where the viscous terms I. contain only terms with derivatives normal to the main flow, F, and G are-the full
Euler fluxes.

Now in stationary, supersonic flow all informations are transported downstream within the Mach cone, but
in the subsonic layers upstream spreading can happen (along characteristics). Therefore the term "parabolic"is
somewhat misleading. This property has to suppressed numerically to avoid instabilities of the solution
if marching in space. The numerical suppressing is justified by the parabolic nature of the boundary layers.
Therefore in commonly applied marching procedures either the pressure gradient normal to the wall is assumed
to be zero across the subsonic layer, (7], or the contribution of the streamwise pressure gradient is is decreased
in the subsonic layer as a function of the Mach number based on a stability analysis (8]. With that, very
efficient, non-iterative marching methods (in streamwise direction) can be constructed for the computation of
viscous, supersonic flow.

However per definition streamwise subsonic flow is excluded (e.g. near the stagnation point). Therefore,
other solutions, e.g. taken from the Navier-Stokes equations, have to be used to update the-initial conditions
for the supersonic part.

Furtheron like the boundary layer equations the parabolic equations can not describe-flow separation in
streamwise direction. In normal direction where usually the-flow is subsonic the parabolic equations allow the
calculation of cross flow separation.

2.5 Boundary conditions

In this paper continuum flow at thermodynamical eqdilibrium is considered. Thus the ooundary value problems
correspond to that known for iower Mach numbers.

The boundary conditions at the wah, ,,r continuum flow are defined by the conditions of vanishing normal
velocity, by the no-slip condition (vanishing tangential velocity vg), and by the thermal conditions:

OT
vn =0, v, = 0, T=T or -=0 (9)On

In the transition regime (not to far from the continuum) the flow is still sufficiently represented by Navier-
Stokes- equations. The influence of rarefaction effects can be restricted to the boundary conditions at the
wall by using the so-called slip conditions (or incomplete accomodation of momentum and energy). Then the
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boundary conditions for the temperature and the tangential velocity form system of coupled equations for
the value, and for the gradient at the wall. They can be written in a gena.all.ed form:

81'
A 9 + B -V = C with 9-= (10)

On

The coefficients in A,B, and C are given by the gaskinetical theory. An application of these slip conditions for
viscous, near-continuum flow is given e.g. by G6kcen, Mac Cormack, Chapman [9]. In this paper it-is shown
that the Navier-Stokes equations are capable of describing the transition flow using appropriate.slip boundary
conditions. As ain example from (9) Fig. 1 shows the computed skin friction drag versus Reynolds number on
a flate plate using different wall conditions.

let Fig.1 Skin friction drag of a flat plate
.. '-.-.. versus Reynolds number. Influence of the
..- ,slip conditions in near-continuum flow,
00

Io :. ......... .. ¢ ° 0 taken from [9).

=0 No-slip" Y =Moo 20.
0 0.6- 0.8 Experiment'

0.7 Monte Carlo'
0 ...... = 0 Generalized slip

P=O Maxwell slip
0.7 Generalized slip + T, - T.

10, 10 , 1O' 01 '"""0
Re-,

The inflow and outflow boundary conditions-are less unique, since they depend strongly on the flow-prob-
lem considered. The number of the boundary conditions (conditions from outside) and of the compatibility
conditions (conditions from the interior -integration domain) can be derived from the differential problem.
For the complete Navier-Stokes equation such conditions are discussed e.g. in-[10], [11]. For the thin layer
approximation such additional conditions can be neglected. In the most cases the correct conditions cannot
be satisfied, therefore -the- assumptions of nearly-inviscid flow (characteristic updating of the conditions) and
of the boundary layer concept (parabolic behaviour in space) are often used.

The inflow boundary conditions for hypersonic flow are usually well defined by the incoming supersonic
flow forming the bow shock in front of a body. If the bow shock is captured the boundary conditions are
represented by the supersonic inflow conditions. Si-.ce in usual Navier-Stokes computations the viscous shock
structure is not resolved alternatively the shock can be fitted as a discontinuity like in inviscid flow. An
example for the latter is given in a section below.

The outflow-boundary condtions are more cumbersome. Usually the outflow boundary cuts an unknown
flow field, and reasonable conditions have to be deduced from the physical problem. If the inviscid flow is
supersonic and if the viscous portions at the outflow boundary is boundary layer-like, then the extrapolation
of the boundary values from the interior is an reasonable conditions. In other cases additional conditions from
outside (e.g. the pressure) have-to be prescribed.

3 Basic Numerical Approximations

The complete Navier-Stokes equations form a system of quasi-linear partial differential equations, which is of
paraLolic-hyperbolic type in the time-space plane, and of elliptic-hyperbolic type in the space (steady-state).
These different types of the equations demonstrate the complexity of-the corresponding solutions.

However the main problems f6r the numerical solution of the-Navier-Stokes equations essentially arise from
the fact that very different length scales, and time scales are involved with tha equations due to the different
physical phenomena described by that. Typical characteristic lengths are for example the body length L, the
boundary layer thickness 6 - L/v'7e, and the viscous thickness of a shock wave 6 - L/Re, which differ by
orders of magnitude in ordinary flows.

To achieve a sufficiently accurate numerical solution these scalings, at least the most- important one, have
to be resolved by the numerical method of solution. -For the most of external, and internal flow problems the
two essential flow regions are-the viscous layers, and the nearly-inviscid "outer" flow.

The viscous layers (boundary layers, wakes) are characterized -by- a small thickness 6 normal to the main
flow. Within the layer the Euler and viscous terms are nearly balanced. Tis.p the solution becomes continuous,

______ ~r
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but shows large gradients and a strong curvature of the variables. This fact can lead to severe-problems of
accuracy of the numerical method if the layers are not resolved sufficiently well,

In the nearly inviscid regions the Euler terms are dominating and the properties of the solution correspond
essentially to that of the hyperbolic Euler equations. Thus continuous (strong) ,and discontinuous (weak)
solutions can appear, as well. The weak solution appears, since in general the viscous structure of a shock
wave with the much-smaller scale length is not resolved. For capturing the discontinuous solutions the use
of the conservative form of the Navier-Stokes equations is required, and a Navier-Stokes solver include an
Euler solver with good shock capturing properties. Thus the Navier-Stokes solution includes all the numerical
problems of the Euler solution, and much care has to be taken to avoid undesired interactions between the
numerical dissipation of the Euler solver, and the physical disspation from the viscous terms in the Navier-
Stokes equations.

In the following sections a brief summary of basic approaches for the discretization of the equations will
be given and some examples for methods of solution will be presented.

3.1 Grid Arrangement and Conservative Discretization

The computation of the flow along curved shapes requires the correct treatment of the boundary conditions
on the surfaces. An appropriate way is to orientate the computational mesh such that one coordinate line or
plane coincides with the curved surface. This leads to a curvilinear coordinate systems, let's say ( , q) for 2-D,
along that the grid nodes are counted.

The grid arrangement influences strongly the accuracy and efficiency of the numerical method. The
essential requirements to the grid arrangement- are:

* clustering of grid points in regions of high gradients (e.g. embedded shocks, viscous layers)

" ortho2onality in particular in viscous regions

e smooth distribution of step sizes to reduce the truncation error

* avoiding or at least reducing of mesh singularitie,, e.g. by using subgrids or block structures

In general not all of the requierements can be satisfied sufficiently well, especially for complex problems.
The generation of grids is usually carried out by numerical grid generation methods. The most important

tools for that are the conformal mapping, the algebraic generation, and the mesh generation -based on the
solution of elliptic and hyperbolic partial differential equations. A summary of such methods can be found
e.g. in [12].

As a suitable procedure to improve the quality of an initial mesh a grid optimization procedure may be
mentioned here. Such a procedure, based on (13J, was used for the present computations [14). The distribution
of the grid points is calculated by a decision function F, which must be minimized.

F = fE (Ei~ + Sij,k) =Min. (

where 0 is a measure-for orthogonality and S for-smoothness and volume control. The measures 0 and S are
defined by the local vectors F to the neighbouring nodes, e. g.

6 6 7 2 m .n (12)

6

SiJk = 1.12#m (13)
M=1

The-factors ar and 0 are -weighting-factors. The solution is carried out by an iterative relaxation method
Por consemritve dscrettzahon in the discrete space a finite control volume has to be defined around or

between -the grid points. Within the volume the variables are represented as volume-averaged values, which
are balanced by the values of the fluxes normal to the cell faces. For the conservative formulations the integral,
and divergence form of the conservation laws can be used, as'well.

The use of the integral form leads to the so-called "finite-volume" approach, where the surface integral is
approximated by the sum over all pieces of the surface. Simplified written the discrete form reads in 2-D:

4

kV1:=

(
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Herein Q corresponds to its volume-averaged value,(FAy - GAx) are the normal fluxes summed up over the
single cell interfaces. The advantage of the "finite-volume" approach is the direct application to the physical
(x,y) space, and the easy interpretation in curvilinear meshes.

For using the divergence form, sometimes called "finite-difference" approach, first the differential equations
have to be transformed in the curvilinear coordinate system and thereafter the equations are discretized in the
transformed plane The advantage of this approach is given in-the more formal way of handling more complex
terms.

For the 2-1) example the transformed equations in the new coordinates (, )-read:

Qt + Ff + 6, = 0 with ) = QJ and P = FFy, - Gx, etc. (15)

Here 3 is the metric Jacobian, which can be interpreted as the volume, and x,, etc. are parts of the surface
normal vector The details can be found elsewhere. After the discretization in the transformed plane with the
corresponding (properly discretized) metric formulation, the resulting discretized equations should agree with
that derived by using the integral form.

It means both ways of the conservative discretization, the "finite-volume" and the "finite-difference" ap-
proach lead to the same discretized equations. Differences only can occur by different arrangements of the
control volume, by the different numerical flux formulations, and by the different updating of the cell-interface
fluxes.

There exists a number of possibilities for tle'arrangement of control volumes in a given grid. The basic
requirement for all of the arrangements of the control volumes is that the volumes do not overlap, and that
no gap is between.

The mostly used arrangements are the "node-centered" , the "cell-centered" , and the "cell-vertex" ar-
rangements, which are sketched inFig. 2.

•Qo, F.1 O"J1 t!xQ. * rul

node-centered cell-verlex cell-centered

Fig.2 Usual mesh-arrangements for conservative discretization.

For a Cartesian grid discretizations in these arrangements show nearly the same accuracy, but for a
curvilinear grid different truncation errors can appear for a certain scheme. For example using a central
scheme it could be shown that for a screwed grid the error from the "cell-centered" arrangement is larger
than those for the "cell-vertex" arrangement [15]. Near a boundary the different grid arrangements require
a different numerical treatment of the boundary conditions ,which can be important for the spatial accuracy
near geometrical discontinuities, like the trailing edge (16]. The better geometrical flexibility have shown the
"cell-centered" and the "cell-vertex" approaches, which also can be extented to triangulated, unstructured
grids (17]).

3.2 Formulation of the Fluxes at the Cell Interfaces

The discretization of the conservation equations for the small control volume leads to the sytem of difference
equations for the rate of change of the volume-averaged variables as function of the normal-fluxes over the
cell interfaces The projection of the variables to the cell interfaces and evolution of the fluxes determines
essentially the quality of the solution.

In the following discussion the 1-D conservation equations will be used for the sake of-simplicity. In the
finite-difference form, they read for a grid point "i""

AQ + F+112 - -1 2 _ Ri+1/2 - Ri-/ 2  (16)
T Ax AX

lerein AQi/Al is the discretized time derivative, defined by the method of solution, and Fi, 1/2 and Ri:E1 /2
are the inviscid, and the viscous fluxes at-the cell interfaces.

The viscous fluzes are usually updated by means of central differences O(AX 2), which corresponds to the
elliptic nature of the viscous effects. Then a viscous term of the form /? = may be-written as

A'+1/2 =i+1/zu1 1 - u (17)'6,x



2-8

The formulation of the inviscid flux terms has a strong influence on the properties of the solution method
and the various methods differ essentially by that.I In the "projection-evolution" approach (sometimes called MUSOL approach) [18]) first the basic variables
(e.g. Q) are inter/extrapolated from both sides- to the cell interface, and then a common numerical flux
formulation is formed with both values.

In the"evolution.projection" approach the flux functions are formed on the grid points, where Q is given,
and then the fluxes are projected to the cell interface. This approach is used e.g. for the "cell-vertex" schemes.
Also combined forms of both may be j,- -..e.

Considering the projection step then the variables Q1+i/2 at the cell interface are usually expressed by a
polynomial of -the variables of the neighbouring points. A general polynomial for the forward Q?+1/2, and
backward extra/interpolated values Q- 1 / 2 may be written as:

Q +112 = Qj + 114 ,p ((1 + n)A+Q + (1 - )A-Q),

Qi+1/2= Qj+ - 1/4 +(i ((1 + c)AQ + (1 - c)A+Q)+i (18)

with A+Q; = Q.i+1 - Qj and A-Qi = Qi -Qi-,.
Herein ( is a switching factor, and-c is the discretization factor.For So = 0 it yields a first order upwind

scheme O(Ax), with o = 1 the scheme becomes higher order accurate, at least second order. In more detail
the scheme is then central O(Ax 2 ) with x = 1, upwind-biased O(AX3 ) with in = 1/3, upwind-biased O(Ax 2)
with r = 0, and fully upwind O(AZ 2) with r = -1.

To avoid the oszillation of the numerical solution, in particular near captured shocks, the extrapolation
has to be limited by a variable switching factor 1p, which is controlled by the solution itself, i.e. 9i =
'p(A'Qi, A-Q,). Such limiters, also called flux limiters can be constructed from the theory of almost mono-
tonic solutions (TVD-theory) and transfered approximately to hyperbolic systems in multi-dimensions (see
e.g. [191,120]).

A number of formulations of such limiters can be found in the literature, e.g. in 121],[18],[22]. In the
present work the limiter by van Albada et al.(21] iPVA with r + is used. All these limiter
formulations react on the local gradient and on the curvature of the variables, i.e. p - (1 - Q../Q,). Those
in regions of weak changes of Q the limiter remains nearly one, but for strong changes the value decreases,
the scheme reduces the accuracy, and stronger numerical dissipation is generated. The latter effect results in
a sharp, non-oscillating resolution of embedded shocks. In v:scous layers, however, where strong changes are
also present, this numerical dissipation can significantly impair the solution.

In the evolution step of the MUSCL approach, the interpolated variables are used to calculate the fluxes
at the cell interfaces.

Within each cell there exists an averaged value of the conservative variables, and thus the values show
a jump at the interface to the neighbouring cell. According to the theory of the nonlinear hyperbolic Euler
equations this jump of the values generates a local -Riemann problem, where the information is transported
forward and backward by the different gasdynamical waves and shocks. The solution of this local Rieman
problem leads to Euler solvers of the Godunow-type 1231,[24]. If the jump is considered to be weak, the
Rmemann problem can be solved approximately using the characteristic solution of the Euler equations. By
means of this assumption a large number of existing flux formulations can be derived.

The consideration of the approximate Rcmann solvers starts from the characteristic form of the Euler
equations, which forms an uncoupled system of eq iations describing the information transport along the
characteristic directions.

W, +A W = 0 (19)

where A = T-IAT , T. dW = dQ , T. dQ = dF , and A =-diag(,A) with )i = (u,u1 a).
For subsonic flow -a < u < a the eigenvalue matrix A may be split in a positive and a negative part.

Then the characteristic form results in:

W + A+ 6 W + +A- 6,W- = 0 (20)

In this semi-descrete version the space derivatives are discretized with the upwind differences corresponding
the sign of the eigenvalues:

6 iW = W+112 -
W 1/2 (21)

Ar
where W1: are the backward or forward interpolated variables according Eq. (18).
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The conservative form is achieved by multiplying the characteristic system with the eigenvect-r matrix T.
Now by different splitting of -the characteristic system, by different updating of the cell interface values, and
by different approximate, conservative back transformations a large number of existing Euler flux formulations
can be deduced by that.

In the following two typical approaches for classes of approximate Rieman solvers are demonstrated briefly.
The direct application of the conservative back transformation toEq. (20) with A:k = TAa:T - ', and

6, F:" i= : 6 Q leads to the class of fluz-vecior splitting methods, which read then:

Qt + 6,(F + F-) = 0 (22)

The flux conservation requires that F = F+ + F-. The fluxes are computed from the correspondingly
extrapolated values, i.e. FE .=

The approximate formulation of the split fluxes is not unique.
The fluz-vector splitting by Sieger Warmnin, [25] makes use of the eigenvalue splitting AE = 1/2(A ± JAI).

Then the fluxes are defined by:

F = T(A+ + A-)T-1 Q = (A+ + A-)Q = F+ + F- (23)

An analysis of the formulation shows that the splitting error remains if one eigenvalue of A vanishes, leading
to a finite dissipation for steady waves. 1urtheron the eigenvalues change discontinuously near the sonic point,
which reduces the rate of convergence, as found in test calculations.

The fluz.vector spliiing by van Leer [26] avoids the latter drawback of the Steger,Warming fluxes by defin-
ing the split fluxes as polynomials of the Mach number, which are smooth near the sonic-point. Since one
eigenvalue vanishes over a steady shock, its representation becomes very sharp. Furtheron this splitting if ap-
plied in implicit schemes results in very efficient, diagonal-dominant solution methods [27],[28]. However also
this splitting formulation shows a remaining splitting error for steady tangential discontinuities, a drawback,
influencing strongly the accuracy in viscous layers. In the modification of van Leer' splitting by lianel,Schwane
[29; the latter drawback could be esssentialy removed, and its application to-viscous flow problems has shown
an increased accuracy (results-are given below).

The class of flux-difference splitting methods can be derived from Eq. (20) by using the eigenvalue splitting
A - = J(A-± JAI). Then the characteristic equations may be arranged to:

wt + !A(6,W+ + 6,W-) + iAI (6,W* - ,W-) = 0 (24)

Applying the back transformation the conservative form reads:

Q, + &FP = 0 with 6:P = / +1!
2 - F.- 112  (25)
Ax

The numerical flux component '+/2 may be defined then in different approximate ways, e.g. in the flux-
difference splitting by Roe [30] the corresponding numerical flux reads:

1= !(F(Q+)+F(Q))+ 11AQ )(Q+ - Q-) (26)

The matrix IAI is determined such away that the averaged variables Q satisfies correctely the jump condition

over a discontinuity parallel to the cell interface:

A( ) (Q+ - Q-) = F(Q+ ) - F(Q-) (27)

This scheme shows a very sharp shock resolution and a small dissipation for steady tangential dicontinu-
ities.' lie latter property is favourable for the computation of viscous -flows.

A class of similar flux-difference splitting-schemes are presented by H.Yee [31].
The central schemes likewise may be considered as a class of approximate Riemann -solvers, where the

characteristic range of influence is equally weighted indeptndent of the Mach number. Assuming a symmetric
interpolation polynomial for the cell interface values, which may be for example Q++,2 = Q,'+/2 = 1/2(Q, +

Qj+1), the conservative equations reduces to

Q + 6:F = 0 with F+112 = F( + ) (28)

Now the central formulation includes the correct eigenvalues of the Jacobian -A, also the spatial discretization
error does not include dissipative parts-(even derivatives), in agreement with the wave character-of the Euler
solution However since this numerical approach ignores the characteristic range of influence, the- numerical

i1
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solution shows a very poor shock capturing capability. Furtheron due to the missing dissipative parts of the
numerical flux formulation any high-frequency error components of the solution can not be damped.Therefore
in the practice artificial damping terms for high-frequency damping and shock capturing have to be added
[32], which leads to similar problems of accuracy as for the other Euler solvers.

The preceding consideration of different Euler solvers covers only a small part of existing methods, which
are so manifold as the authors are. The few number of schemes considered here will be used as a basis to
discuss some aspects of solution methods for the Navier-Stokes equations.

As an important new tendency for Euler solvers the developement of multi-dimensional Rieman solvers
should be mentioned here. These schemes take into account multi-dimensional wave propagation and remove
the drawback of mesh dependency of the usually one-dimensional Rieman solver. An example for that with
further references is given e.g. in [33].

4 Methods of Solution

In general the time-dependent equations are used for solutions of unsteady, and stationary flow problems, as
well. The advantage of using the time-dependent equations for steady-state computations, is that the initial
value-boundary value problem remains independently from the Mach number range, and thus one single
method can cover the whole ranges.

The computation of time-dependent flows requires a discretization in time which is consistent and suffi-
ciently accurate (at least O (At)). For time-accurate computations additional care has to be taken also the
spatial discretization errors, which likewise influences the temporal accuracy.

For steady-state computations the transient solutions have no meaning, as long as the steady-state solution
will not be influenced by that. Therefore consistency and accuracy in time is not required, the method of
solution (in time) can be chosen e.g. for a optimal rate of convergence. This leads to a class of pseudo
time-dependent methods which correspond in principle to an iteration scheme. Herein known acceleration
strategies for improving the convergence can be taken over like e.g. the Newton iteration with Gauss-Seidel
relaxation,local time stepping or the multigrid methods.

An important decision for the selection of a method of solution is the decision to use an explicit or an
implicit method. The explicit-methods have the simpler algorithm, only the steady-state operator has to be
evaluated from the known initial state, the new state can be computed decoupled from grid point to grid
point. Thus the explicit method is well suited for structured, and unstructured grids, as well. Vectorization
and parallelization of the algorithm is much simpler to achieve. However the numerical time step of an
explicit method is restricted by the numerical stability, which is proportional to the spaee step divided by the
fastest gasdynamical wave speed. Additional restriction comes from the viscous terms, proportional to the
cell Reynolds number.

If the steady-state solution is of interest only,-the problem of time step restriction can be overcome by use
of pseudo time-dependent methods with the corresponding acceleration strategies. Together with the simpler
algorithmic structure very effective explicit methods for the solution of the Euler, and Navier-Stokes equations
are available.

For time-accurate computations the explicit scheme results in a tolarable time advance, as long-as in the
physical problem only one time scale is present, e.g. the gasdynamical scaling in inviscid solutions, just defining
the stability restriction. If however -additional smaller scale lengths, like in viscous- flows at high Reynolds
numbers have to be resolved the time step becomes very small and the time accurate computation becomes
too expensive. For this reason time accurate computations with an explicit scheme may be still efficient for
inviscid flows and viscous flows at moderate- Reynolds numbers, but for high Reynolds numbers some other
ways, like implicit schemes or multigrid methods should be taken in consideration.

The implicdt schemes have the advantage of being unrestricted stable, or at least allow a much greater
time step-than an explicit scheme, but the computational work per time step due to the -inversion -of the
large solution -matrix is much larger. A handicap for vectorization of the implicit methods are the recursive
structure of the inversion algorithms, but with a clever organization and sufficient computer storage -the
implicit algorithms can be vectorized in the same high degree'as the explicit schemes.

The mostly used implicit scheme in the seventies-was the Approximate Factorization (AF), [34]. This
method allows the inversion per time step in a non-iterative way, which is an interesting aspect for time-
accurate computations. Its efficiency for steady-state solutions, however, is restricted by the fact-that the time
step is limited to Courant numbers of 0(10) due to the factorization error. With the development of upwind
schemes the relaxation schemes became an alternate, very efficient way of an implicit solution since by using
that diagonal-dominant solution matrices can be achieved. These relaxation schemes make use of-a iterative
procedure to solve the equations each time step. If the solution matrix is sufficiently well-conditioned and
diagonal-dominant the resulting solver becomes very robust and efficient for steady-state solutions since the
time step is indeed unrestricted.An interesting aspect of the relaxation scheme is that the iterative procedure
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per time step corresponds to a solution of a quasi-elliptic problem, which is challenging for the application of
the multigrid methods.

The methods of solutions and their variants-are numerous, therefore in the following section only two
methods of solution for the Navier-Stokes equations will be discussed as typical examples for implicit and
explicit methods.

Tile description of the methods is based on the time-dependent Navier-Stokes equations for a compress-
ible fluid, written for a two dimensional curvilinear coordinate system, let's say ( ,r7,t). The equations in
conservative form read:

S R(29)

Details of the transformed equations can be found elsewhere.
With a conservative discretization in a way as described above the approximated Navier-Stokes equations

(29) read:
( A + Res() = 0 (30)

ET

where AQ/AI is the discrete time derivative, and Res (Q) corresponds to the discretized steady-state operator:

Res() = 1  (31)

with 64f = - f - f 6 A.f + A

4.1 Implicit Relaxation Method

Starting from the discretized Navier-Stokes equations (30) the implicit backward Euler formulation is used for
the time derivative. After the-time linearization-of the fluxes the difference equation reads

[-L + 6f A + 6, b - I (bf 5 + 6, b)n A = -Res(n) (32)

* with A('n = Q,+1 -, where the superscript n denotes the time level, and A, B,b, are the Jacobian of
the corresponding-fluxes P, G, S and T. Using for example the flux splitting concept the Jacobian of the Euler
terms split up in two terms, like = 6 ( +

and are treated in the same way as the fluxes, using the-MUSCL approach. For steady-state calculations,
where time consistency is not required, the solution matrix of equation (32) is simplified using first order
upwinding only. Thus the matrix to be inverted consists of tridiagonal block systems in each direction.

Even for this case the implicit scheme (32) requires the inversion of a large system of difference equations.
Since the solution matrix is diagonally dominant resulting from the upwind differences, an iterative relaxation
procedure is employed to the unfactored scheme allowing-large time steps. Then the iterative procedure from
time level n to n+1 reads

+ 6 .A + 6, B - (6 C + 6, D))n A& = -Res(Q") (33)At Re

where the superscript v is the iteration index and A(& = &n+l, - &n. The iteration of equation (33) is
performed by either a collective point or line Gauss-Seidel relaxation in alternating directions. The iterative
procedure is stopped if maxIA QV+ - AQ I < e where c is a small number. For more-details see [28].

4.2 Runge-Kutta Time-Stepping Scheme

The second method which has been applied to the Navier-Stokes equations is the explicit Runge-Kutta method.
Considering the equation (30) as a semi-discrete approximation of the time-dependent Navier-Stokes equations,
the time discretization can be carried out as a sequence of intermediate steps in the sense of the classical Runge-
Kutta method. At present a version of the Runge-Kutta method is used-which has been successfully applied to
Euler and Navier-Stokes equations e. g. by Jameson [35]. In contrast to the present work, central differencing
with artificial damping was used in this paper.

For a N-step Runge-Kutta method the scheme for equation (30) reads

Q(O) = Qn

AQ Q) = -cetAtRes( (''-))/J ( 34QQ) I 1,..,N(34)
Q(1) = Q() + AQ(

Q Q+I = QN
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In the present paper a 5-step Runge-Kutta scheme was adapted for a maximum Courant number which is
4.0 foi the central and 3.5 for the upwind scheme. The upwind scheme shows the lower Courant number but
the better high frequency damping, which is of advantage for the multigrid treatment.

To accelerate the convergence to the steady-state solution local time steps can be used which are dictated
by the local stability limit and constant Courant number.The local time stepping allows a faster signal prop-
agation, and thus faster convergence. A second acceleration technique is the implicit residual smoothing [35],
for which a Runge-Kutta step of Eq (34) reads:

(1 - e-6 C) (1 --e 6,) AQQ ) = -at At Res(Q('-'))/J (35)

with smoothing coefficients c of 0(1) the CFL number can be increased by a factor of two to three.

5 Multigrid Formulations for the Solution of the Navier-Stokes
Equations

The multigrid method is known to be the most efficient method for solving elliptic partial differential equations
The basic concepts of multigrid methods were formulated by Brandt [36],[37]. Encouraged by this success
attempts were made to take up the multigrid concept in solution methods for time-dependent, parabolic or
hyperbolic problems. Here, of very great interest are the numerical solutions of the conservation equations,
which require a large amount of computational work for practical problems. Thus, to reduce the computational
work, a number of investigations were made to incorporate the multigrid concept into existing methods of
solution for the Euler- and Navier-Stokes equations, as well. Examples for multigrid applications in explicit
and implicit Euler solutions are given by Chima, Johnson 138], Ni [39], Jameson [35], and by Hemker [41],
Mulder [42) and others. Navier-Stokes applications can be found e. g. in the paper of Shaw, Wesseling [69),
Thomas et al [44), Schr6der, Hinel [28), and Radespiel,Swanson [40), Jameson,Siclari (46].

In the present paper the multigrid methods will be discussed for two basic solution concepts, an explicit
scheme, and an implicit relaxation scheme.

Because of the different structures of the implicit and the explicit scheme the multigrid method is employed
in different ways. In, the present implicit relaxation method the multigrid method is used to accelerate the
iterative matrix inversion each time step. Thus it is part of the-relaxation procedure for each time step,
and therefore called indirect multigrid method. For the explicit scheme the multigrid concept is applied in
space and time, as well. It directly influences the solution in time and therefore is-called direct method, A
common requirement for the application of both multigrid formulations is the property of smoothing out-the
high frequency error components by the scheme. This requirement is satisfied in principle by the use of an
upwind scheme. The common basic multigrid concept for both methods is the Full Approximation Storage
concept (FAS) [37] which is employed in the present study and will be described briefly in the next section.

5.1 Full Approximation Storage Multigrid Concept

Brandt (371 has proposed the Full Approximation Storage (FAS) multigrid concept for the application to
nonlinear equations. Therefore it was adopted in the present solution of-the Navier-Stokes equations. Consider
a grid sequence Gk,k = 1,...,m with the step sizes hk = 2hk+l etc.

A finite difference approximation LmQm = 0 on the finest grid Gm may be represented after some
solution (smoothing) steps on a coarser grid Gk-I by a modified difference approximation:

Lk-,Qk- = rk_1 (36)

where r is the "fine to coarse defect correction" and refered to as the "discretization error" in the following.

It maintains the truncation error of the fine grid Gm on the coarser grids Gk-I and is defined by

-= + Lk_1(I'Qk) - II'-I(LkQk) (37)

where I and H are restriction operators from grid Gk to Gk-1 which are applied to the variable Qk and the
difference approximation L*Qk, as well. These operators can be used as injection or full weighting operators

On the coarse grid Gk-I equation (36) is solved and the transfer (37) is repeated for the next coarser grid
until the coarsest grid is reached. After some solution steps on the coarsest grid the solutioa is interpolated
back to the finer grids with some solution steps in between.

According to the FAS scheme only the correction between the "old" fine grid solution Q 1 nd
coarse-grid solution Qk is transfered to the fine grid e.g.-

Qnw Qod+Jh1kl kl¢ Qold
+= + I 1 (O - Ik+ QM1 ) (38)

i! .1'
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Herein I +' is the-interpolation operator, where so far only bilinear interpolation is used.
The described multigrid procedure corresponds to a typical cycle (V-cycle).
In a similar way as for the scheme, Eq. (36), the boundary conditions have to be corrected on the coarser

grid. Let C.Qm + 9. = 0 be any boundary approximation on the finest grid, then the FAS correct
approximation on the coarser grid is:

C¢-1 Qk-i + 9k-i = TBT'_1 (39)

where 7'- rB + Ck- I ( Ikk- Qk) + gk- - - (Ck Qk + gk) (40)
For time-accurate computations this correct form should be-used to avoid an larger truncation error. If the
multigrid method is considered only for steady-state solutions, simplifications of the coarse grid boundary
conditions can be used. One approach is to use frozen boundary conditions on the coarse grid while updating
them only on the -fine grid. This is a reasonable simplification, e. g. for a node-;entered scheme, where the
nodes (variables) are defined on the boundary itself. In schemes, like a cell-centered scheme [35], where the
boundary is located between two nodes, the coarse grid boundary conditions can be used as for the fine grid
(without correction), but then, only their change on the coarser grids is transfered to the fine grid using the
FAS -interpolation.

Different formulations are possible for the restriction operator (fine to coarse grid). The best way is to
update the coarse grid values by the values of the fine grid cells that make up one coarse grid cell. This yields
the full weighting restriction, e.g. for the residiual it is

ilk,- Resk Qk / Resk~k (41)
fine cells

where /3 is a weighting factor. In some cases (e.g. in node-centered meshes) the-simple injection (point-to-
point) can be used, which reads E.g. for the conservative variables Q, (not Q),

1k- Qk = Qk (42)

The final formulation of the restriction depends on the mesh arrangement and on the degree of approximation
of the multigrid scheme used.

5.2 Indirect Multigrid Method for a Relaxation Scheme
The purpose of multigrid is to reduce the large computational work of the matrix inversion each time step
of a relaxation scheme Eq. (33). Similar concepts for the Euler equations- were used e.g. in [41),[42]. In
[28] this concept was applied to the iterative matrix inversion of the upwind relaxation method, according
to Eq. (33). By use of the upwind discretization and flux-vector -splitting the scheme becomes sufficiently
dissipative and then the iterative procedure corresponds to a solution of a discrete quasi-elliptic system, which
guarantees an efficient use of the multigrid method. On a coarser grid Gk-, the relaxation procedure, Eq.
(33) is approximated-by Eq. (36)

LHSf-1 AQ-.k + ResT"(Q!_. ) = I (43)

with the discretization error

-,= " + LHSn. ( 1 '-' A ) + Resk- (4k ) - I -fLHSf ASQ + ressQ ] (44)

After some relaxation sweeps on every grid level including the coarsest one, the correction Ae v(not Qfn+1.,)

is interpolated back to the finer-grids according to Eq. (38).

AQ41+= &Qk+I + k+ (AQk -- -k_1 k I (45)

followed by one relaxation sweep on each grid to smooth the interpolation errors. The V-cycle is completed
after the finest grid is reached and in general the next time step is carried out after one or two V-cycles.

The present scheme was developed for a node-centered mesh and therefore the simple point-to-point injec-
tion, Eq. (42), could be used for the restriction I of AQ". The volume-weighted restriction H, Eq. (41), over
the nine neighbouring fine grid cells is employed for the difference operator and the residual. Bilinear inter-polation is used in-Eq. (45). The boundary conditions were employed explicitly with respect to the iterative
level on the finest grid only-and remain unchanged on the coarser grid. The present method-extended to 2-D,
curvilinear grids is described by the authors in [28]. The method -was applied and tested for different flow
ranges. In the following the convergence behaviour of the multigrid method is demonstrated for two typical
subsonic and supersonic solutions of the Navier-Stokes equations.
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The subsonic boundary layer flow and the supersonic viscous flow over a wedge were computed to demon-
strate the capability of the multigrid method. The history of convergence for different fine meshes as shown
in Fig. 3, and Fig. 4 for the single grid (SG) and multigrid (MG) method. Always based on the same coarsest
grid, two-, three-, and four-grid methods have been built up for the same integration domain. In general the
rate of convergence of the single grid method -decreases for both cases with increasing number of grid points,
whereas for the multigrid method the rate is nearly independent of the number of grid points.

The present multigrid method was applied to different viscous, subsonic and supersonic flow problems,
[28), [47], and has shown to be a reliable and effective method. In the different viscous flow cases -omputed
with the present multigrid concept the estimated gain against single-grid methods was about a factor of two
to twenty depending on the flow problem.

5.3 Direct Multigrid Method for Steady-State Solutions

For this method the multigrid procedure is employed directly on the time-dependent solution. In contrast to
the indirect method the time advances also on the coarser grids. Applied to an explicit scheme the advantage
of multigrid is twofold: first, computational time is saved because of thesmaller number of-grid points on the
coarser grids and secondly, the time steps restricted by the numerical stability can be chosen larger on the
coarser grids. In principle the direct method can be used for an implicit method as well.

Consideiing an explicit time-dependent algorithm as a-solution-method for steady-state- solutions only,
simplifications of the multigrid procedure are allowed as long as the stdady-state solution is not impaired. The
aim is the construction of an effective acceleration -technique for explicit schemes to reduce the drawback of
the time-step restriction. In this manner the multigrid method was succesfully used e. -g. by Jameson [35]
and other authors for accelerating the explicit Runge-Kutta time-stepping- method.

In the present studies the behaviour of the direct multigrid procedure for the Runge-Kutta scheme with
flux-vector splitting was investigated for-different viscous flow problems,

Employing the FAS-multigrid procedure, Eq. (36), to the Runge-Kutta scheme, Eq. (34), an intermediate
Runge-Kutta step on a coarser grid reads:

Q - Q(O) - Atk (Resk_ Q, ) 
- rk-)/ Jk-i (46)

The discretization error r between the fine grid "in" an i the coarse grid "k - 1" can be split in two~terms:

= (r.i)Re + (7Lf ,ime (47)

The first part of tile discretization error corrects the spatial accuracy on the coarser grid and is defined by.

('rkl)R,, = Reski(lk-l Qk) - Ik-' Resk(Qk) (48)

Approximating the time derivative of Q-in the Runge-Kutta algorithm by AQ/At the second term can be
written as:

(rj~)iie f~*1 (Qk(t 0 ) Qk(t" - Atk-..-))] - I/Atk-l
.[ (Qk(t) - Qk(t - Atk)) • (49)

where 0a is the time when the grid level is changed. If the time steps Atk and Aik-i on the fine and on
the coarse grid are different, then the variables on several fine grid levels have to be stored to establish

timeaccuatecorrection onl the coarser grids.
One aim is to study the different multigrid influencing the convergence to steady-state. In a brief summary

the important factors are-
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* high frequency damping properties of the basic solver The Fig. 5. demonstrates, that different schemes
with sufficient lead to similar rates of convergence.

e grid arrangement The Fig. 6 demonstrates similar convergence for cell-centered and node-centered grids,
if the restriction operators and the coarse grid correction r is appropriate chosen.

* coarse grid boundary conditions The investigations have shown that the more correct FAS formulation,
Eq. (39) shows an advantage -against simpler approximations, like frozen conditions. (see Fig. 7.).

o some other factors more, like multigrid cycle arrangement, number of smoothing steps, aspect ratio of
grid cells, etc.

.t
Res', 3t

i.,0 Fig.5. Maximum residual versus work units.
1is" Subsonic flow past a flat plate
04' C with Ma = .5, Re = 104.
'0.5 N.-S.eq's, Runge-Kutta method,

1 
4  direct MG method.

,0.,1 HLL VL Influence of different Euler solvers

-.sL _ _VL flux-vector splitting, van Leer
S SW lw HLL flux-difference splitting, Harten, Lax, Leer [45]
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30CC 102

s. (,
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Fig. 7. Influence of coarse grid
boundary conditions.

Fig. 6. Influence of mesh configurations. Legende see Fig. 5.

Legende see Fig. 5

NC node-centered mesh (1) single grid solution

CC cell-centered mesh (2) MG, frozen boundary conditions
(3) MG, FAS- corrected

boundary conditions

The present-studies were focused essentialy to subsonic, viscous flows. However in the literature multigrid
application can be found for supersonic flow, too.

An explicit Runge-Kutta scheme with local time stepping and residual smoothing was presented by
Siclari,Jameson [46]. A multigrid algorithm has been applied to-the computation of both inviscid, and viscous
supersonic/hypersonic conical flows. With the exception of one case, the multigrid algorithm reduced ,he
computational time by at least a factor of two, whereby the multigrid gain was somewhat better for viscous
flow (since the-explicit non-multigridscheme slows down due the viscous grid streching). Fig. 8, taken from
[46], shows the convergence history for the multigrid and single grid time stepping method, applied to the
calculation of the inviscid, and visccous flow over a circular cone.

The present investigations of the direct multigrid method and that in the literature have shown that-the
multigrid concept is a useful tool to reduce computational work, in particular for Navier-Stokes solutions.
However the-multigrid concept introduces a number of additional parameters to be adapted for succesful
computations. To our experiences-the largest gain even for steady-state calculations, was achieved when the
multigrid elements were consequently formulated according the FAS concept.

Continuing investigations of the direct multigrid method concern with its use for unsteady solutions.
Preliminary-results are discussed ir [49).
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Fig. 8 Multigrid convergence of Runge-Kutta time stepping scheme solving the Euler equations(left),
and the Navier-Stokes equations (right) for the flow over a circular cone at Ma = 2,0,a = 25*

(Results taken from (46]).

6 On the Influence of Numerical Damping
The ,-.omerical damping summarizes the effects of dissipative, but also dispersive parts of the discretization
error. In numerical solutions of the conservation equation the effects of numerical- damping are essentially
caused by the approximation of the Euler equations. Although the exact solution of the-hyperbolic Euler
equations is non-dissipative, a certain amount of numerical dissipation has to be included to capture shocks
and to damp high frequency errors. This dissipation however impairs the accuracy of the solution, Since the
Euler equations make an important part of the Navier-Stokes equations, the effects of numerical dissipationinfluence the viscous solution as well.

6.1 Numerical Damping in Solutions of the Euler Equations
The Euler equations form a nonlinear, hyperbolic system of partial differential equations, for which two
classes of solution exist, the strong continuous solutions describing the non-dissipative wave transport along
characteristics, and the weak, discontinuous solutions representing e.g. shocks. An efficient numerical method
of solution has to capture both classes of solutions sufficiently well.

In numerical methods the differentials are approximated by differences (or elements) over finite step sizes
The truncation or discretization error, which is the difference between the differential and the corresponding
difference approximation, consists of even and-odd higher order derivatives, which are responsible for the
dissipative and dispersive errors. Particularly the dissipative parts act viscosity-like and cause smearing of
the solution or artificial vorticity production. Therefore the aim of the numerical approximation should be to
minimize the amount of numerical dissipation.

On the other side a certain amount of numerical damping is necessary in the methods of solution to avoid
the accumulation of randomly distributed small errors. Such errors can be external errors, like round-off errors,
or can be caused internally by frequency amplification due to the nonlinear convection terms. In general, these
errors are distributed with smallest resolvable wave length which is in the order of the step sizes. Therefore
damping terms have to be included to filter these high frequency components without impairing the lower
frequencies.

A widely used approach for such high frequency damping terms is to use fourth order differences, which
hav, a sufficient filter effect and are small of 0 (Az 3 ) in smooth solutions. Such terms are internally generated
by the scheme, e.g. in high resolution schemes, or have to be added artificially as in central schemes, These high
frequency damping terms are efficient in smooth regions, but fail in regions of captured, stronger discontinuities
The finite difference methods treat such embedded discontinuities like continuous solutions, but due to the
strong changes over a few grid points strong oscillations can be induced which are-mainly caused by the
frequency amplification of the nonlinear convection terms. Such solutions are not acceptable and. therefore
additional shock capturing terms have to be included into the-Euler solver, Usually, such terms are based on
second order differences with a nonlinear viscosity-like coefficient which produces a strong dissipation within
the "shock layer" but vanishes outside in smooth regions. Again such terms can be added -artificially as-in
central schemes, or are included into the scheme, as in high resolution upwind schemes.

Ventral chemes for the Euler equations are a widely and very early used concept for the numerical solution
of the Euler and Navier-Stokes equations. Examples for such-schemes are the schemes by MacCormack [50],

f _~ ,,
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by Beam and Warming [34] and by Jameson et al. [32]. These schemes use the averaging, Eq. (28), and thus
lead to second order accurate solution methods in space. The truncation error has only dispersive part (odd
derivatives) and therefore has no dissipative mechanism. Already in the early attempts artificial dissipative
terms were added for this reason, e. g. in [51].

In the present state of art there exist formulations for the artificial damping terms which are commonly
used. These damping formulations consist of a linear fourth order term D(O) and of a nonlinear term D(2).
Then the one-dimensional Euler equations read:

+ r+', + DO - D ) = 0 (60)

The high frequency damping term D(4), necessary to smooth errors of short wave lengths (e.g. round-off
errors) has the form:

D (4) = C4 AX)- - A •Q., (51)

where C(4) is a user specified constant.
The shock capturing term D(2) has to suppress oscillations from the nonlinear terms in particular for

shocks.
D(2) e(2) LX) A. X (52)A

The damping is controlled by the nonlinear coefficient C(2), which is proportional to a constant, multiplied by
the normalized curvature of-the pressure. In smooth regions of pressure the term becomes very small, but is
O(Ax) in regions of strongly varying pressure. Refinements were given by various authors,

The effect of the damping terms becomes evident- when considering the truncation error. Applying the
numerical formulation Eq. (50) to the linear, hyperbolic model equation Qt + Q, = 0, the truncation error in
space is:

r =(C(2)- t ) AX . ! - A,2 .Q=--(6(4) t ) AX3 + ... -... (53)

Assuming the Courant number & being 0(1), then the artificial damping terms are of order O(Az), and
O(AX

3), resp..

ligh resolution schemes (e.g. flux-vector or flux-difference splitting) are conservative like the central
schemes, but take the advantage of the hyperbolic properties in form of discrete Riemann problems. In
general they become higher order accurate by using upwind discretization. Nearly oscillation-free solutions
and sharp shock representation is achieved making use of the total variation diminishing (TVD) principle [19]
The development of these- schemes is connected with Osher [52], Ilarten [19], van Leer [18] and many other
authors. Because of-the improved -quality of the numerical solution, the-high resolution schemes are used in
the computational fluid dynamics with increasing tendency, although these schemes are more complicated and
more costly than the central schemes.

The 1, I resolution schemes do not use any added artificial damping terms, however since the high fre-
quency s_, thing and the shock capturing are necessary requirements, the corresponaing mechanisms are
implicitly included in the scheme.

A large number of high resolution schemes is existing with similar solution properties as discussed in the
previous sections.

The damping properties of such an upwind scheme is strongly influenced by the extrapolation, Eq. (18),
controlled by the discretization parameter- n, and by the limiter So. This can be demonstrated by-means of the
spatial truncation error, derived by applying the extrapolation 18 to the linear model equation Qt + Q= = 0'

= (1- )--Q -[1 - X( - ,- O - [3( _ - c) - (1 - )]"!L-Qzxz + -. (54)

The comparison with the truncation error for the central scheme with artificial damping in Eq. (53) reveals
the similarity of the damping mechanisms in higher resolution schemes, which likewise generate two dissipative
parts, a fourth order difference for high frequency damping, and an second order difference for shock capturing
Assuming no limiting, = 1, the fourth order term in Eq. (54) becomes proportional to (1- Kc) and damps as
long as upwinding is used (r. < 1) but vanishes for central discretization (r = 1). In regions of strong changes,
where (o < 1), the fourth order damping is reduced as in the blended damping formulation [32] in central
schemes.

The second order term in Eq.(55) responsible for the sharp and oscillation-free solution of captured shocks,
is completely controlled by the limiter ,p and thus by the solution itself. The factor (I- vo) controls the amount
of numerical viscosity added. If expanded in Taylor series, taking the limiters e.g. from [21], it yields

S- V ;z:;2(55)
2 Q
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This value is very small in smooth regions, but becomes large, where Q z 1, e. g. near shock waves.
Therefore the quality of the resolution of discontinuities is strongly determined by the formulation of the flux
limiter o.

The larger interest on the damping properti= of high resolution schemes was concentrated on their effects
in viscous flows (53],[54]. Thus further aspects are discussed in the next section.

6.2 Influence of Numerical Damping in Solutions of the Navier-Stokes Equations

A widely used way for developing a method of solution for the compressible Navi!r-Stokes equations is to
add the viscous and heat conduction terms to a reliable working and stable Euler solver. This combination
generally leads to efficient Navier-Stokes solvers, stable even for high Reynolds numbers. But in contrast to
the inviscid solutions, the solutions of the Navier-Stokes equations contain very different characteristic scale
length with correspondingly different types of solution. Typically are thin viscous layers with continuously, but
strongly changing flow quantities, and large inviscid flow portions with discontinuous solutions, as well. Thus,
the solution requires sufficient resolution and accuracy in all of these flow regimes. Computing the viscous
flow at high Reynolds numbers the accuracy of the numerical solution is essentially influenced by numerical
damping, caused by the discretization of the inviscid part (Euler terms) of-the Navier-Stokes equations. In
the solution of the Euler equations numerical dissipation is always present, and in viscous layers, where the
stroi.g gradients and curvatures occur, this dissipation becomes large and is superposed to the physical, viscous
effects, Therefore the amount of the numerical dissipation in viscous flow solutions depends essentially on the
type of the Euler solver used.

In the course of development and testing of methods of solutions for the Navier-Stokes equation the
influence of the Euler damping on the viscous solution was found to be a crucial problem for accurate flow
solutions. Therefore in the present investigation a number of different basic Euler solvers were used to study
their influence on viscous steady-state flows. Results for the flux-vector-splitting scheme were published e. g.
in (531. More complicated and remarkable turned out to be the influence of the damping in viscous, unsteady
flows as shown e.g. in (16]. A summary of these effects are presented in the following.

6.2.1 Viscous Steady-State Solutions

The accuracy of steady-state solutions is mainly governed by he spatial discretization and their damping
properties.

Considering the classical central schemes, Eq. (50), with linear fourth order and nonlinear second order
terms the investigations have shown a sufficient spatial accuracy for the boundary layer solution. The reason
may be that the linear damping term can be held small per external parameters, and the nonlinear terms
controlled by the curvature of the pressure, remain small in shear layers where the normal pressure changes
are small. However in boundary layers with strong adverse pressure-gradients the deviations become stronger
and require a careful analysis.

More attention has to be paid for the high-resolution Euler schemes within a Navier-Stokes solver. Such
schemes are very well suited for capturing gasdynamical wave phenomena by using local approximate Riemann-
solvers, higher order upwinding, and TVD flux limiters. These schemes achieve a sharp shock resolution- by
a controlled numerical dissipation which however is also generated in shear layers due to the curvatures of
profiles. These aspects are discussed in several papers [53],[54]. The investigations have shown that the
accuracy is influenced-on the one hand by the different formulations of the Riemann solvers, and on the other
by-the way of constructing the higher order numerical fluxes, e. g. the-flux limiter and discretization.

To show the essential influence of the different factors simplified test problems are-considered in [53]. In
the following some results of these investigations aresshown.

The simpliest problem studied was a numerical solution of the nonlinear, scalar Burgers equation:

Q, :h (Q2/2)r = (vQ.): v, > 0 (56)

An-exact steady-state solution of this equation is given-by

Q(x) =-Qo. ianh (Q OX (57)

with the boundary conditions Q(0,t) = 0 and Q(oo, t) = Qoo.
As a typical test problem for the full Navier-Stokes equation-the boundary layer flow over a'flat plate was

considered. Since exact solutions for the problem are-known, e.g. the solution by Blasius [55], numerical errors
can be detected easily by comparison.
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Fig. 9. Influence of the discretization on the Fig. 10. Velocity distribution in the boundary layer

relative error between numerical and over a flafe plate (Navier-Stokes equations).

exact solution of the Comparison of the computed results

scalar Burgers equation. for different discretizations.

The influence of the upwind extrapolation wa. studied by applying Eq. (18) to both problems and varying

the discretization parameter K with p = 1. The influence of different upwinding becomes apparently in Fig

9, where the relative error between the exact and the numerical solution of the scalar problem Eq. (56) is

plotted over x. The tendency is that for smaller values of c (i.e. more upwinding) the error becomes more

negative, which means the solution tends to smear out more and more, although the schemes are higher order

accurate. The Navier-Stokes solution for the boundary layer flow confirms this tendency. The Fig. 10 shows

the boundary layer profiles for the flow over a flat plate-using van Leer's flux splitting [26). The different

velocity profiles were achieved by varying only the extrapolation of Q1"_, Eq. (18), from central to upwind

discretization. Compared with the central discretization (n = 1), which agrees well with the Blasius solution,

all upwind formulations of second order accuracy (r = 0) or even third order (n = 1/3) tend to stronger

dissipation.
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Fig. 11. Influence of a flux limiter Fig. 12. Velocity distribution in the boundary layer

on the relative error over a flate plate (Navier-Stokes equations).

between numerical and exact solution Comparison of the computed results

of the scalar Burgers equation. with limiter (van Albada et.al.)
and without limiters.

The influnce of the flux limiters is studied by applying additionally the limiter of Albada [21] to the

preceding problems. The limiters control the -higher order-extrapolation, Eq. (18), for shock- capturing. In

principle they react upon the curvature by reducing the the higher order terms, which leads in smooth, viscous

regoins to an undesired numerical dissipation. This tendency is clearly shown in Fig. 11 where the relative

error of the scalar problem, Eq. (56), is plotted for different schemes without and with limiter. All the results

with a limiter show a larger -negative error, ie. more dissipation. This behaviour is -also reflected- in the

Navier-Stokes solution. In Fig. 12 the velocity profiles in the boundary-layer are plotted for computations

without limiters, p = 1, and with a limiter (van Albada, [21)). The comparison shows that-the limiters
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suppress the overshooting in the outer part of the profile, but they increase the numerical diffusion in regions
of high curvature. Concluding from that, limiter formulations are desired in viscous -flows, which do not
react so strongly to the curvature. Further investigations in [53] have shown indeed, that the different limiter
formulations do it in a different strength.

The formulauon of the numerical Euler fluzes has an essential influence on the accuracy in viscous layers.
For example in Fig. 13, where the skin friction coefficient over a flat plate is plotted, the results with van
Leer's flux vector splitting, [26), and with the flux difference splitting by Yee, Harten [56), in principle Eq.
(26) are compared with the Blasius solution. In this case the flux difference splitting results in a more
accurate solution. Both splitting schemes use similar discretization elements, only the-way of constructing the
approximate Riemann solver is different.

C, , ,~,

004 V.))

fr..t, Fig. 13. Distribution of the skin friction
00) 2 s... along a flat plate.

Solution
002 of the 2-D Navier-Stokes equations.

Comparison for different discretizations
0000 ...... of the Euler terms:

O original van Leer flux- splitting
0 0 X/- 110 with upwind biased scheme O(Az 2 )

A symmetric TVD scheme Yee/Harten O(Az 2)

Deducing from that, an essential property of a Riemann solver if used within a Navier-Stokes solver should
be the property that the eigenvalue along a tangential discontinuity vanishes. That is, since the boundary
layer problem seduces to-a tangential discontinuity in the limit Re oo, with the no-slip condition fixed.

The flux-splitting scheme by van Leer [26] has not this property, and thus this scheme produces a large
dissipation. To demonstrate this effect the boundary layer was calculated in one and the same mesh but for
two Reynolds numbers Re = 10' and Re = 1020. This physically unreasonable- high Reynolds number was
chosen in order to generate a practically inviscid flow with no-slip conditions. The resulting velocity profiles
and the B'asius solution as a reference-are plotted in Fig. 14. Although the physical boundary layer thickness
for Re = 1020 is much-smaller than one step size, the numerical solution results in a thickness over several
grid points.
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Fig. 14. Velocity distribution Fig. 15. Distribution of the skin friction
in the boundary layer over a flat plate. along a flat plate.
(Navier-Stokes solution with r. = 0 Solution of the 2-D Navier- Stokes equations.
and-limiter by van Albada et al.). Comparison for different discretizations
Comparison of the results for-Re = 10' of-the Euler terms:
with the numerically generated boundary layer original by van TLeer
for (Re = 102) computed in the same mesh. present modification,(29]

To investigate this effect, and to improve the accuracy of van Lear's flux-vector splitting the-behaviour
in viscous regions was studied in more detail (29]. An analysis has-shown-that the upstream/downstream
extrapolation for the split fluxes, Eq. (18), generates a flux defect in-the case of the tangential momentum,
which is strongly changing in a boundary layer profile. This defect could be essentially removed-by applying
one-sided upwinding in direction of the- normal velocity to both split fluxes of the tangential -momentum
equation. It was found in test calculations, that the one-sided extrapolation-of the tangential velocity reduces
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the splitting error, and makes flux-vector splitting more consistent with the correct Rieman problem in
particular for tangential discontinuities. The improved accuracy is demonstrated in Fig, 15 by comparison
with the original formulation by van Leer. Further results are presented in (291,

6.2.2 Unsteady Viscous Flows

The temporal accuracy of a numerical solution of viscous flows is of the same importance as the spatial accuracy
is, since many viscous flow problems become unsteady because of the strong interactions between viscous and
inviscid flow. The computation of such flows requires sufficient accuracy in space and time. But the numerical
error can hardly be estimated since both the spatial and the temporal discretization errors influence the time
resolution. Furtheron due to the different scale lengths in time and-space an analysis by means of scalar model
equations is not sufficient to explain the numerical behaviour of a Navier-Stokes solution.

Therefore numerical experiments with solutions of the Navier-Stokes equations are necessary to detect the
influence of the numerical errors. Such experiments were done recently. Results concerning with the numerical
effects in time-dependent solutions of the Navier-Stokes equation are-published in (16]. In this investigation
the Navier-Stokes equations are solved with a Runge-Kutta time stepping-scheme. Central discretization used
in a cell-vertex grid system, results in a second order accurate algorithm in time-and space. This method
was used to study the time-dependent laminar flow over different airfoil geometries. As a typical result Fig.
16 shows the streak line patterns for the unsteady, separated flow around an NACA-0012 at high angle of
attack. The periodical flow can be described quantitatively by the time history of the lift, which is a result of
complex interactions between the inertia forces and cepafated flow. To achieve a good time accuracy about
2000 time steps per period were used. However, the numerical experiments revealed that beside of the time
resolution the spatial discretization and its damping properties have a strong influence on the behaviour. To
demonstrate this, the amount of the linear fourth order damping term, which is of O(Az5 ) compared with the
physical terms of the equations, was-varied in a range commonly used in steady-state calculations. In Fig. 17
the history of the lift is plotted for different values of the coefficient e(4) of the damping term. The results show
a very different behaviour concerning the frequency and the amplitude for every case which is also reflected
by the corresponding flow pattern. Similar large effects are-also found by varying the grid spacing and grid
arrangement.

These investigations have shown a very large influence of the numerical- damping in unsteady solutions.
Further work has to be done to achieve sufficiently time-accurate solutions.
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Fig. 16. Instantaneous pattern of the Fig. 17 Time histories of the lift coefficient
velocity vectors for the separated flow for three values
over an NACA-0012 at high angle of the fourth order damping term
of attack a = 20r. (Legend see Fig. 16).
Navier-Stokes solution from 416].
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7 Applications to Hypersonic, Viscous Flows

7.1 Present upwind relaxation method by Schwane,ffinel

In this section an upwind relaxation method will be described, which is used by the authors for the computation
of viscous, hypersonic flow. Some details of the method will be presented, and special features for adapting
the-method-to the requirements of hypersonic flows will be discussed. This numerical method for solving the
Navier-Stokes equations-is a 3-D extension of the method published by the author in [28].

The governing equations are the 3-D thin layer approximation of the Navier-Stokes equations formulated for
a curvilinear node-centered mesh. The 3-D mesh generation is carried out by the grid optimization procedure,
Eq. (11), starting from an algebraic initial mesh. The method consists of an upwind high resolution scheme
using flux-vector splitting for the Euler terms and central discretization for the viscous terms. The solution
is carried out by an implicit relaxation procedure, as described by Eq. (33). The details of this method of
solution for viscous, hypersonic flows can be found in (57],(58],[29].

Different to the former method [28] the present 3-D method uses a modified flux splitting formulation [29],
[5], improved with respect to the accuracy and robustness in hypersonic, viscous-flows. The improvements
may be of general interest and will be explained in more next section.

7.1.1 Formulation of the flux-vector splitting for hypersonic viscous flows

Formulation of the original concept For the following discussion the 1-D Euler equations will be
considered:

Qt + F. = 0 (58)
According to the splitting concept the flux-F is split into a forward flux F+ and a backward flux F- with
F = F+ + F-. The original split fluxes by van Leer [26] read:

r = :-1/4pa(u/ah 1)2

-2 Fj',((-1)u~l2a)/7j (59)

r: = Fj. ((j- l)u 4 2a)2/(2(f2 _-1))

The split fluxes-at a cell interface are updated by using forward/backward extrapolated variables Q : for
F -(Q'E).

The favourable properties of this concept, that is smooth changes near the-sonic point, and one zero
eigenvalue, we want to preserve in our reformulation. However, these split fluxes are expressed-by the density
p, the velocity u and static speed of sound a = p, which all are quantities changing strongly in high Mach
number flows. Therefore they can cause stronger numerical errors, and-reduce-the convergence. Replacing
these variables, at least partially, by less varying or evenby invariant quantities an improvement in that flow
regime can be expected.

Sonic Switching with-the Critical Speed of Sound A-drawback of the original splitting in hM ersonic
flows, but also of other Riemann solvers, is related to the use of the static speed of sound a = x/yp/p, which
controls the-eigenvalues, and thus the-splitting. In strong expansions this quantity, but also p and p, become
very small and their values can become faulty since they are calculated from the small difference between
the large values of total and kinetic energy. As a consequence in implicit schemes the usual large time steps
have to be reduced significantly to avoid negative thermodynamical quantities in the transient state. The
scheme-becomes inefficient in this case. To overcome these difficulties the splitting formulation, Eq. (60) was
rearranged in this paper in order-to avoid the use of the static speed of sound. Without impairing the essential
properties of the original concept-the splitting can be written as:

F1 = ±-/4pa(u/a -1)2

A = F1'.(u+Y-(-u/a±2)) (60)
pa

By this, the choice of the rEnal speed a does not influence the total flux F = F+ + F-. Therefore it
can be appropriabely chosen with the only condition, that it approaches to the static speed of sound at the
sonic points Ma = ±1. In van Leer's splitting-a was chosen as a = a = V'3y71 For our-experience a more
appropriate choice of a is:

a = a' = /2( 7 - 1)1(7 + 1). H, (61)
where a* is the critical speed of sound. The critical-speed a' is porportional to the square root of the total
enthalpy and is therefore constant in isoenergetic (Euler-) flow (also in strong expansions) or only-smoothly
varying in viscous flows. For real-gases the calculation-of a* is more complicated, but since the choice of a is
not unique an approximate relation for real-gases can be found-with the corresponding properties.
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Split Energy Flux A'-further drawback of the original concept was noticed in supersonic blunt-body
calculations where significant deviations of the computed wall temperature were found in regions of large Mach
number gradients [53]. Investigations have shown that this effect is mainly caused by the non-preservation of
the total enthalpy Ht using the original split energy flux'of Eq. (60). This effect could be removed substantially
by using an alternate split energy-flux [53):

- H, (62)

where the enthalpy H, is transported as a whole by the split mass fluxes FK. It has the advantage of being
simpler and of being generally valid also in the case of real gases, where the original splitting has to be modified
[59]. Since H, is constant in isoenergetic flow, and weak varying in viscous flows smaller numerical errors are
induced by this formulation. The improvement of the accuracy by this formulation is clearly demonstrated in
Fig. 18 for the wall temperature distribution over an 3-D hemisphere-cylinder body.

Fig.18 Wall temperature distribution related
I Re 2.94 to the inflow stagnation temperature,t , Re .72 over the arc length in the mid plane

T esenl.v.L E- fluxes of a hemisphere-cylinder body.
presenl.modif.fluxes Influence of the modified split1.0 oo o~ VIVIAND ef al.ehryfu[5]

energy flux (53].
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Modification of the Flux-Splitting for Viscous Flows Previous investigations (53), (54] have shown
that van Leer's flux vector splitting used in a Navier-Stokes solver impairs the spatial accuracy in viscous
regions more than other- Euler schemes do. On the other hand the van Leer concept leads to reliable and
efficient implicit solution methods and therefore attempts are made to improve the accuracy in viscous regions.
Analysing the solution behaviour in a typical boundary layer flow the main source of inaccuracies beside of
the effects of flux limiters etc. was found to be the splitting error of the tangential momentum equation at low
Mach numbers. In such flows the tangential velocity u grows from zero-at the wall to its large outer value ue
over a short distance-6, whereby the normal velocity v is small. Considering the-Rieman problem in normal
(y) direction, then the flux component pv u of the tangential momentum is splitted according to van Leer's
concept in

pvu = [pa/4 (I + v/ia) it]+ + [-pa/4 (1 - v/a2) u) (63)

Assuming for simplicity pa cz. onst. and v/a < 1 it-yields a remaining error

p v pa/4 (u+ - U-) (64)

Sin~e the curvature of u(y) in a boundary layer is large, the difference of the backward and forward extrapolated
velocities U+ - u- can become remarkable even with higher order extrapolation. This error was found-to be
responsible for the strong smearing using flux vector splitting in viscous layers.

This error, Eq. (64), can be completely removed if the tangential velocity u is extrapolated from one
direction only i.e. either u+ or-u-. This one-sided extrapolation is also motivated by the consideration of
the Pliemann problem at the cell interface. The characteristics updating in one-dimension leads to a coupled
system for the pressure p, the density p, and the normal velocity v along the characteristics v, v :- a. In two
and three dimensions the additional characteristic condition requires the trainsport of the tangential velocity
(du=0) along the characteristic- v, which is decoupled from the other conditions. This means that upwinding
according to the direction of the normal velocity has to be used for tangential velocity (and not from both
sides). Thus the one-sided-extrapolation of the tangential velocity removes not only the essential splitting
error, Eq. (64), but also-makes the flux vector splitting more consistent with correct Riemann problem-in
particular for stationary tangential discontinuities.

For the implementation in existing algorithms the velocity tantential to a cell interface was set to

v:= v+ if vn > 0 ,and v: =-vT if vn < 0. (65)
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For the other variables the usual forward/backward extrapolation is remaining. The changes in the program
for the steady-state operator were small, but for the implicit part rearrangements were necessary to achieve
the same favourable convergence as before.

The improvement of accuracy in a boundary layer flow is demonstrated in Fig. 15, where the skin friction
distribution over a flat plate, computed with the present formulation is compared with that, using the original
van Leer's splitting.

The improvement of the spatial accuracy becomes more evidently in the computation of more complex,
viscous flows as shown in an example below (Fig. 24 and 25).

Formulation of the Implicit Part at Hypersonic Speeds In the original version-of the algorithm the
implicit operator-(left hand side LHS(Q)) in Eq. (33) consists of the Jacobians of the split fluxes derived with
respect to the conservative variables, e.g.:

(66)

Herein nost of the elements of the Jacobians are divided by the density p. For reasonable large values of
the density no problems arise by that, but in hypersonic flows the density can approach zero, and the solution
matrix becomes singular with the corresponding consequences for the convergence. Therefore in the present
paper the implicit part was reformulated using non-conservative variables V with

V = (p,,,,,w,) _)T  (67)

Then the implicit relaxation scheme, Eg. (3), reads:

LHS(Vn)- (V +' - V") = -Res-Q' with Q = Q(V') (68)

The new implicit operator LHS(V") contains the Jacobians derived with respect to the non-conservative
variables, e.g.

A _FV (69)

which now are not divided by-the density or by any other critical quantitity. Thus the good convergence
properties of the scheme remain in hypersonic flow, even if-strong expansions are present. Additionally, by
this formulation the structure of the Jacobians becomes simpler.

7-1.2 Boundary Conditions and Shock Fitting

The present algorithm was applied to the computation of the viscous, super/hypersonic flow around blunt
bodies. The domain of integration is bounded by three typical boundaries, which are formed by the bow
shock, by the body contour and by the outflow boundary.

On the body the boundary conditions are given by the no-slip and thermal conditions at the wall, Eq. (9).
The outflow Loundary conditions are less unique than the wall conditions, because a more-or less arbitrary

flow field is cutted by the boundary. As long as the outflow is supersonic and the boundary layer is attached
a well-suited boundary condition is given by simple extrapolation of the boundary values from the interior.
In the case of flow separation this condition becomes inaccurate, since information about the downstream
state is necessary. However this state is unknown, more sophisticated conditions cannot be prescribed. The
only way would be to shift the boundary in regions of more regular flows, where information are available
(attached flow, known outflow pressure). In the present blunt body problem this way was not-possible without
significant increase of computational effort, therefore the simple extrapolation was used also in the case of
separation. The result have shown to be reasonable despite-of the cutted separation zone in some cases,A shock-fitting procedure is applied at the outer boundary, so that the position of the detached bow shock
is a result of the calculation. The state behind-the shock is determined by the jump conditions over the
shock, and the shock-position by a simplified compatibility condition. Starting from a guessed shock position
the variables behind the shock are calculated from the Rankine-HIugoniot relations and-used as boundary
conditions for the inner field. After one time step the solution is advanced and a corrected value of the
pressure-can be extrapolated from the interior flow field to the shock. From-this pressure value and from the
local shock slope a transient free stream Mach number Ma,, 0 in normal direction can be calculated, using
the pressure relation over the shock. The difference of this Mach number and of the prescribed Mach number
Ma ,o yields the local normal shift of the shock:

Ar= aAt ('Mo, - Ma,) (70)

n,0
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3.36 The distribution of the normal shift vector A-P on the shock-surface is not smooth in general, an effect
which is amplified by the irregular grid point distribution resulting from the strongly, streched inner mesh
with mesh singularities. The result would be an wriggled shock surface which again results in wrong inner
shock conditions. Therefore the main problem for fitting is to achieve a very smooth new shock surface,
which however should allow jumps in the slope due to secondary shocks coming from the inner domain. The
smoothing of the shock surface was carried out in two steps. First the shift, Eq. (70), was interpolated in a new
triangulated grid of the surface with regular cell size, which shows no singularities. The new shock position in
the new grid is additionally smoothed by requiring locally minimum curvature. This was done in an iterative
procedure. The final position is then redistributed to the original computational grid by interpolation. This
fitting procedure avoids the problems near grid singularities and allows time steps as large as used in the inner
scheme.

7.1.3 Results

As a typical hypersonic application of the present method results are shown for the flow around a double-
ellipsoidal body. This problem, defined and experimentally studied in [60], is likewise used as a test case in
the HERMES R&D-program [61).

Fig.19 Computational mesh (250.000 grid points) on the surface of-the body (left) and in the
outflow plane (right) for the computation of the flow around a double-ellipsoidal body.

N

Fig.20 Experimentally observed Fig.21 Vectors of the local skin friction
oil-flow pattern for the on the body surface using a mesh of
double-ellipsoid with 250.000 grid-points.
(Ma = 8.15, Re-= 2. l01, c = 300.) (Ma = 8.15, Re = 2. 106, cr= 3o0 .)

The mesh used for this body is shown in Fig. 19 for the body surface-and for the outflow plane. Herein
an additional subgrid was used to avoid the strong singularity of a single mesh, the number of grid points in
this example was 250.000. The following results refer to a flow with Maoo = 8.15, Re. = 2. l06, To = 800K
and an angle of attack of 300.

This flow is characterized-by distinct separation zones, which are demonstrated in Fig. 20 by means of
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oilflow patterns taken from the experiment [60]. In this figure the complex flow structure on the lee-side
becomes apparent with the primary separation enrolling to a vortex, and with a secondary reattachment and
separation on the second ellipsoid ("canopy"). Using the fine mesh of 250.000 points the oilflow pattern of Fig.
20 was numerically simulated by plotting the shear stress vectors on the surface in Fig. 21. The comparison
of-Fig. 21 with the experimental picture, Fig. 20, shows a close agreement.

The isomach lines in the symmetry plane are plotted in Fig. 22. The patterns show the fitted bow
shock, the "canopy" shock and a strong separation on the "canopy". A further separation is induced
at the foot of the "canopy" shock. The main cross flow separation near the large axis of the first el-
lipsoidal is clearly demonstrated in Fig. 23, where the isomach lines are plotted in the outflow plane.

LI

Fig.22 and-Fig.23 Isomach lines in the symetry plane and in the outflow plane
(Legend see Fig.21)

These results were achieved with-the algorithm, described above, including all the modifications for hy-
personic flow, but with exception of the modification for-viscous flow, Eq. (65), which was implemented
later. Without this modification the Euler part generates a remarkable numerical dissipation due to the
splitting error demonstrated in Eq. (63). This- fact is demonstrated in Fig. 24, where the- same prob-
lem is recomputed using a much coarser grid of-60.00 points only. Comparing the shear stress vectors in
Fig. 24 with the fine grid- solution, Fig. 21, and with the experiment, Fig. 20, a poor agreement on
the lee-side can be stated which clearly is a result of the numerical dissipation due to the splitting error.

Fig.24 Vectors of the local skin friction Fig.25 Vectors of the local skin friction
on the body surface using acoarse mesh on the body surface using acoarse mesh
of 60.000 grid points, of 60.000 grid points.
(Legerd Qee Fig.21) (Legend see Fig.21)

The comparison with Fig.24 demonstrates
the improvement of acurracy
by the new splitting [29].

Now this flow case was recomputed using the modification, Eq. (65), i.e. the one-sided extrapolation of
tangential velocity in the splitting concept. Despite of the coarse mesh of 60.000 points used here as for Fig.
24, the shear stress vectors in Fig. 25 demonstrate, that nearly the same good agreement with the experiment
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could be achieved as for the fine grid but without the improved numerical fluxes. This comparison and that
for the simpler boundary layer in Fig. 15-have demonstrated the possibilities to improve the quality of an
Navier-Stokes solver.

7.2 Selected Works for Hypersonic, Viscous Flows

In the past years the number of papers concerning with the computation of hypersonic flows is showing an
increasing tendency as a consequence of the new hypersonic airplanes and space shuttle projects. Even re-
stricting to solutions of viscous flows, the spectrum of methods and solutions is still very large. In principle
most of the methods applied to the Euler equations are extentend in any way to the Navier-Stokes equations,
and since many-of them are sufficiently robust, they were also extented to hypersonic flows. An evaluation of
the quality and efficiency becomes very difficult sinces the approaches and problems, solved are too different.
Additionally a number of uncertainces are existing with respect to the description of the physical phenomena,
like laminar-turbulent transition, chemical reaction rates, and rarefaction effects. Therefore a successful devel-
opment of the computational methods for reliable flow prediction requires a critical comparison of numerical,
analytical and experimental results. A useful tool for that are workshops, where well-defined and validated
problems have to be solved by the different methods and the solutions have to be compared. A promising
workshop for hypersonic flows is the one proposed for January, 1990 in Antibes [61]. This workshop will consist
of a number of well-defined- 2-D and 3-D hypersonic flow-problems validated by corresponding experiments.

In the present paper a selection of works concerning with hypersonic/supersonic, viscous flows will be
presented to demonstrate the variety of possbile approaches fo h personic, viscous flows, however without
claiming completeness.

A possible classification can be made with respect to the degree of approximation for the governing equa-
tions of viscous flow. There are solutions for the

full Navier-Stokes equations (NS) (including Reynolds-averageu equations)
thin layer approximation (TL)
parabolized- Navier-Stokes equations (PNS)
The most complete description can provide the full equations, including all the inviscid and viscous effects,

also the interactions between. The thin layer approximation, although streamwise derivatives of the viscous
terms are neglected, has nearly the same validity in high Reynolds number flows where viscous effects are
concentrated in thin layers.

Mostly the NS or TL equations are used in a time-dependent formulation, also for steady-state solutions.
The parabolized Navier-Stokes equations correspond to the stationary thin layer- equations. They allow

very economical space marching methods, if applied to steady-state, supersonic flow with (in streamwise
direction) attached viscous layers. In the cross-flow planes flow separation is provided.

In the following some typical methods for solving the NS and TL equations will be discussed.
A first example for that was explained-in more detail in the preceding chapter. This upwind relaxation

method by lliinel,Schwane (29], [58] uses flux-vector splitting and is coupled with a shock fitting procedure.
An upwind relaxation scheme is applied to complex hypersonic viscous flow by Schmatz, (62). The spatial

discretization is based on the characteristic flux extrapolation approach by Eberle [63]. To increase the
robustness for hypersonic flows, this approach was combined with with flux-vector splitting by Steger and
Warming.

Mac Cormack in [64 follows-a similar concept with line relaxation-and flux-vector splitting (of Steger-
Warming type). This concept was prefered for the extension to the stiff chemical equations. Preliminaly
results were given for simple body contours showing e.g. species cone -ntrations and the different temperatures
at non.equilibrium.

Likewise a fully implicit method is used by Bardina,Lombard [65), based on flux-difference splitting and
on a strongly diagonal-dominant factorization and relaxation method. The bow shock is completely captured.
The method was proposed to be very appropriated for chemical reactiont-and adaptive grid technique.

An example of an relaxation scheme, applied to the stationary Navier-Stokes equations is presented by
Rieger and Jameson, [66]. In this-scheme the steady-state operator is by central finite-volume discretization
with artificial dissipation added. The implicit part-is developed-in the sense of a Newton iteration, the flux
Jacobian are splitted in a simplified manner using the spectral radius of the eigenvalues. The solution is carried
out with a LU-decomposition scheme. In this paper the flow around a HERMES space shuttle was computed
for viscous, and inviscid flow,,as well. As an interisting example, the Fig. 26 shows the iso-mach lines in a
certain cross section of the 5huttle for both types of flow. The comparison reveals the different formation of
the vortical flow in particular in the vincinity of the body.

i
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Fig,26 Computation of the 3-D flow around a space shuttle (HERMES) with Ma 8,Re/m = 106, c - 300
Implicit LU scheme for Euler and Navier-Stokes eq's (Results from (66]).

Isomach lines in the cross section x = 12.7m for viscous (left) and inviscid (right) flow

Computations using a hybrid explicit-implicit difference scheme including shock-fitting is published by
Kordulla et.al. (67]. Herein a central scheme is used with the corresponding artificial damping terms. To
overcome the severe time step restriction in-meshes with cells of high aspect ratios the scheme is explicit in
the two-direction tangential to the body, but is implicit normal to it. The equations of state for equilibrium
flow are included. Results were presented for different 3-D configuration, likewise for the double-ellipsoidal
test body. Similar results were shown as in Fig 20 to 25.

An example for using an explicit scheme for hypersonic flows is the "historical" paper by Mac Cormack,
1969, [68], where the well-known predictor-corrector method was applied to the Navier-Stokes equations. Also
nowadays this method is in use as a reliable and cheap method of solution. A very complex application
for that is given by Shang, Scherr [69]), where the hypersonic flow around a complete aircraft was computed
(Ma = 5-95,Re = 1.64. 10T/m) with an algebraic turbulence model included.

Furtheron a large number of solutions may be mentioned presented by 11. Yee (31], based on symmetric
and upwind TVD-schemes.

Another class of methods of solution are based on-the finite-element approach in triangulated, unstructured
grids- additionally using adaptive- meshes.

,_ P/P i r
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WALL PRESSURE DISTRIBUTION
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Fig.27 Computation of the flow over a 100 compression ramp with Ma = 2.25 using a finite element
Navier-Stokes solver with-adaptive mesh enrichment (Results from [71]).Initial and final mesh (left)

and-comparison of the computed pressure distribution with experiment (right).

An example for the possibilities of adaptive grid enrichment in viscous, supersonic flow is taken from
Koschel,Vornberger (71]. As a-demonstration Fig. 27 shows the initial and final mesh and-the computed
pressure distribution for supersonic flow over a compression ramp. Here a-two step explicit Taylor-Galerkin
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finite-element method is applied to the full Navier-Stokes equations.
An application of an upwind finite-element method using unstructured triangular meshes with several

layers of quadrilateral elements near solid walls is presented by Prabhu,StewartThareja (72) to high speed
viscous equilibrium flow. Fig. 28 shows the adapted meshes and the temperature contours for ideal, and real
equilibrium gas.

Equilibrium air Ideal gas

.

Fig.28 Adapted finite element meshes and temperature contours of ideal gas and equilibrium air
for the viscous flow past a cylinder at Ma = 16.

(Results taken from 172)).

A large-number of 2-D and 3-D hypersonic applications of finite-element methods for reacting and non-
reacting flows were presented by Periaux (70], summarizing the works of INRIA and AMD-BA in France. For
the Navier-Stokes equations a Petrow-Galerkin finite-element method is used with streamline upwinding and
entropy variables.

The parabolized -Navier-Stokes equations (PNS) allow computations in a very economical -way for flows
which satisfy the presumptions. Applications can be found-for the computation of-supersonic, and hyper-
sonic flow over complex geometries or complex physical flows. An example for the latter may- be the paper
by Prabhu,Tannehill [73], where a PNS-code -is presented, solving the conservation equations for a multi-
component, chemically reacting gas mixture.

1'0
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....PNS

----- RNS
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Fig.29 Comparison-of-the skin friction/1 over a compression ramp calculated
using the NS, PNS, and RNS
equations.
(Results taken from (74]).

0
0 X/L 2

In interesting contribution is given by Power,Barber (74], where a comparison is made between solutions of
the Navier-Stokes equations(NS), the parabolized equations (PNS), and the so-called- reduced Navier-Stokes
equations (RNS). The RNS equations correspond in their form the PNS equations, but the streamwise pressure
gradient term was- modified-to account for the upstream propagation- of pressure waves within the subsonic
layers. The RNS solution is somewhat more expensive than the PNS solution, but much cheaper than the NS
solution. Results are given for strong -viscous/inviscid interactions on a compression ramp at Ma=14. Fig. 29
shows a comparison-of the skin friction distribution using NS,PNS, and RNS procedures. The results confirm
that the PNS equations are not able to describe strong interactions, even without separation, whereas the
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results from the RNS equations are closer to that of the full equations.
A similar comparison was presented by Ng,Ajmani,Taylor,Brock [75) using-upwind schemes for high speed

viscous flow. Comparative studies were made for the PNS, TL and full NS-equations. Typical factors of the
CPU time were reported with 1 for PNS and 3 to 20 for theTL and NS-equations depending strongly on the
problem studied.

An interesting new attempt was made by Taylor,Ng,Walters (76], where the favourable properties of the
PNS and NS methods was tried to combine. The algorithm depends on a decomposition of the global domain
into sub-domains, where a small "elliptic" region is identified, and the remainder of the-flow is identified as
a single larger "hyperbolic" region.A direct solver is applied to the elliptic region, and then coupled to a
Gauss-Seidel relaxation in the hyperbolic region marching in streamwise direction.

8 Conclusions

The preceding survey about some typical approaches to hypersonic, viscous flows has shown the variety of the
numerical methods appiicable to these problems. Despite of the variety some conclusions can be drawn or at
least tendencies can be shown.

1. All the Navier-Stokes solutions for hypersonic flow require a robust, and a-highly resolving Euler solver
to handle the strong gasdynamical wave phenomena. The great majority of methods uses the upwind
and symmtric high resolution Euler schemes, based on the TVD principle.

2. The strongest shock, the bow shock, should be treated as a discontinuity by a shock fitting procedure,
thib leads to a correct treatment and saves grid nodes in comparison to the capturing. The embedded
shocks are usually weaker and can be captured. But examples have demonstrated that capturing of
the bow shock can also be used with the advantage of avoiding the more complicated fitting procedure.
Then the shock is resolved over several grid points, the number of points depends on the properties of
scheme used, and on the grid arrangement (shock surface orientation). This "smearing" of the shock
can be a disadvantage if smaller scale lengths, e.g. through chemical reactions, have to be resolved. Of
similar importance are the strong expansions in which the thermodynamical quantities approach very
small values. This can cause incorrect solutions and a loss-of convergence, as stated in-the preceding
chapter.

3. The thin viscous layers require a fine resolution and a very accurate algorithm, sinca here strong gradients
and curvatures~are present. Special attention has to be given to the numerical dissipation of the Euler
solver which is superposed the physical dissipationand impairs the viscous flow solution.

4. The survey has shown that explicit and implicit schemes are used, as well. BotAh types are able to capture
the gasdynamical waves. However for flows at high-Reynolds numbers whert one spatial stepsize becomes
much smaller than the others the stability restriction of the-explicit schemes reduces significantly the
efficiency. This restriction can be partially reduced by- some accelaration techniques for steady-state
computations- (e.g. local time steps, multigrid etc.) With the increasing difference of the characteristic
scale lentgth to be resolved (increasing stiffness), the implicit methods -become more efficient since they
are not restricted by the numerical stability. In particular, in chemical reacting flows where additional
small scale lengths have to be resolved, this fact should be taken into account.

5. Among the implicit schemes, the number of schemes using an iterative procedure for the matrix inversion
each time step (relaxation schemes), shows an increasing tendency, compared with that using non-
iterative methods like approximate factorization methods. The advantage of the unfactored relaxation
schemes is that the time step is-really unrestricted- and that different appropriate relaxation techniques
can be applied (e.g. point or line relaxations, multigrid). Furtheron the most of the relaxation schemes
allow a more flexible organization of the algorithm, either minimizing the storage requirement to one set
of the variables plus geometry per grid point, or if sufficient storage is-available CPU time can be saved
by storing the quantities which are constant during the iteration loop, (doing the latter an estimation
for present relaxation scheme [58) would give an gain in CPU time of five to ten),

6. Pa-allel to-solutions on structured grids using finite difference/volume methods a large number of calcu-
lations are carried-on unstructured grids mainly-using finite element methods. The primary advantage
of the latter is the geometrical flexibility, avoiding the-mesh singularities of the structured grids, and the
more economical mesh arrangement. Adaptive grid-refinement by mesh enriching allows an increased
accuracy in critical regions. Drawbacks of the unstructured formulation is the more expensive calcu-
lation and the increased storage requirement per grid node. The unstructured algorithm makes the
vectorization more difficult. The solution-method-is usually restricted to (decoupled) explicit schemes,

----------! ~----- - -
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thus the schemes may become inefficient for high Reynolds numbers due-to the stability restriction. A
significant difference in the quality of the computed results seems not to exist. In future developments
the advantages of unstructured and structured grids, and of finite element and finite difference/volume
methods should be combined.

7. A further important point is the utilization of-the computer architecture, i.e. high rates of of vector-
ization and parallelization are required-for the very expensive Navier-Stokes computations. Hereby the
explicit structures-are of advantage. However also the most of implicit schemes are highly vectorizable
with s'rme more efforts (and storage), in particular for threedimensional algorithms. Parallelization on
mult' " ivessor machines becomes increasingly simpler with the improved software of the supercomputer
mantlc *refs.
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SUMARY

The main objective of this paper is the presentation and the discussion of turbulence models devo-
ted to-calculate aerodynamIc flows charaeterized-by high speeds and heat exchanges.

"- basic equations of the average flow are obtained from the NAVIFR-STOKES equations. After a
discus., i f" various possible vr~ys for defining the averaging-process, the equations are written by using
the mas.- . . ' averages,

A g.'-- .t background of turbulence models is presented in incompressible flow and several models
applied in coxpivssible flow are-described. This includes mixing length models, one-equation models, two-
equation models and-REYNOLDS stress models. The-effects of compressibility and the development of turbulent
heat flux equation models are also presented.

Finally a few cozparlsons between computed and experimental data are given.

1 - INTRODUCTION

The main objective of this paper is the presentation and the discussion of turbulence models devo-
ted -to calculate aerodynamic flows characterized by high speeds and heat-exchanges.

In boundary layers at high speeds, the dissipation (due to the deformation work of viscous stres-
ses which transforms mechanical energy into heat) is significant and leads to subsequent heat exchanges
within the fluid.

Very often, the high speed flows are associated with a strong shock wave in front of the body.
This shock wave produces a strong compression- and high temperatures in the flow. Therefore. it is often ne-
cessary to maintain the wall at a low temperature in order to avoid any damage ; consequently, the wall heat
flux is very strong.

The role of turbulence models is not only to enable us to calculate these heat fluxes but also the
influence of hig' speeds and heat exchanges on the velocity field -and on the skin friction.

Unfortunately. there Is no theory of turbulence. This means that turbulence models are-techniques
devoted to predict or reproduce the main characteristics of the flow as far as possible. This also means
that experiments are necessary for the elaboration of turbulence models and for the control of their vali-
dity. To illustrate this point, two examples are given below.

The first example is the rather-unexpected reduction of the spreading,rate of the mixing layer in
supersonic flow (fig. 1). This result forced modellers to serious adaptations of models and, in fact, this
prob.em is not yet properly solved.

The second example concerns the effect of Mach number on the skin friction of the flat plate. As
shown in figure 2, due to D. BUSHNELL (1980-81 STANFORD Conference), -there was a large scatter in the p'e-
dictions until the-sixties. Later, experimental data have been obtained and all the "predictions" collapsed
onto 'he same curve.

In the following sections, a review of available models will be presented. It is assumed that the
fluid is air which behaves as a perfect gas. Reactive flows such as flames or-dissociated air flows are ex-
cluded and mixtures of fluids with different density are also excluded.
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2 - GENERAL IDEAS ON TIE CALCULATION OF TURBULENT INCOMPRESSIBLE FLOWS

2.1. The various aproaches of calculation

There is not a unique strategy to calculate a turbulent flow.

For simple flows, such as the boundary layer-on a flat plate, correlations between the main bound-
ary layer characteristics have been determined empirically. This is for example the law for the evolution
of the skin friction coefficient as a function of the-REYNOLDS number. At the other extreme, when the flow
is complex, it can be useful to have correlations between the desired result and a few important
parameters.

The calculation of boundary layers is often done by using integral methods. The principle of these
methods is to solve the boundary layer equations integrated normal to the wall, between the wall and the
outer edge ; the set of global equations is closed with more or less elaborated relationships between the
boundary layers characteristics (skin friction, displacement thickness, momentum thickness, ...). The most
sophisticated of these integral methods are very efficient and are still in use nohadays.

Another way for calculating a boundary layer is to solve the local equations. The equations are
obtained from a decomposition of the flow into an average flow and a fluctuating flow. In incompressible,
two-dimensional, steady flow, the averaged equations are

au ovU 5- IV

au aU dP a U )

dP
The pressure gradient dP-being assumed to be known, the solution of equations (1) requires a model

which expresses the REYNOLDS stress - p <u'v'> which represents the effect of turbulence on the mean flow.

For standard boundary layers, specific models have been developed such as mixing length schemes.
For more complex flows, other techniques involving transport equations describing the evolution of turbu-
lence characteristics are available.

These models are devoted to engineering applications. For more fundamental studies of turbilence,
various approaches are used : direct numerical simulations, large eddy- simulations, two-point closures,
stochastic models, ... It should-be noticed that these approaches are also useful for improving the hypo-
theses introduced in transport equation models.

2.2. General background of turbulence modelling

Let us recollect now the general background of one-point closure models.

2.2.1. Turbulence scales - Eddy viscosity

In equation (ib), the apparent turbulent stress is combined with the viscous stress and contribu-
tes to the diffusion of momentum. This analogy is often advocated to introduce the concept of eddy viscosi-
ty to express the REYNOLDS stresses as a function of the mean velocity gradient in the same way as the vis-
cous stresses ; the reasoning is based on a hypothetical resemblance between the molecular motion and the
turbulent motion and it leads to the mixing length scheme. -In fact, it is better to introduce these con-
cepts- as-resulting from a dimensional necessity -(TENNEKES-LUMLEY, 19Z6). Let us- consider -a shear flow in
which the velocity gradient-has a predominant component, let us say . On-the other hand, it is assumed
that the-energy-containing eddies can be characterized by a velocity scane u-and a length scale 1. The mix-
ing length hyothesis-consistsaof assuming that the mean flow imposes its time scale to the turbulent flow.
So, we get

u aUU" au (2)

The mixing length model is deduced from eq. (2) and assuming a good correlation between the fluc-
tuations u' and v'

- <u'v'> U Z . or - <u'v') ~ l (3)

ayI
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This simple example shows the importance of scales in turbulence modelling. Indeed, turbulence is
modelled by assuming two types of structures characterized by their scales. On the one hand, we have the
energy-containing eddies, the scales of which are u (velocity), t (length),- = 1/u (time) and, on the
other hand, we have the dissipative eddies, the- scales of which are u, q, r -7/u.

2.2.2. Dissipation

The dissipation process Is an important characteristic of turbulence which represents the trans-
formation of kinetic energy into heat due to the work performed by the viscous stresses. This point can be
shown from the comparison between the kinetic energy equation and the enthalpy equations. In compressible
flow, the equations for the instantaneous flow are

D a@ <ui a

Oh a X Oh) Op OP

with t,, - p, + 2 & 1) Oue)

ep0 is the dissipation function

% = 2 stj i1 3 0x4

From equations (4) and (5), it is clear that the work p 'p. of viscous stresses represents an ex-
change between kinetic energy and heat. In addition, p 0 because

(Oil ~ ~ ~ a Uv aO~~ (w O 2 wO Ov 2  
(Ov O\

2 
fw u)

2 1
% = + ! +a.) w 2z + (L _ Ly) + az X)G!ya. a 5yJ KO O5) 3 a~y ay) (y Oza) OZ- Ox)

Returning now to the case of-an incompressible flow, we have

9D = 2sis

The average value of the total kinetic energy is

<uI u k> U Ui  <u uI >
2 2 2

The dissipation-rate of the kinetic energy K of the mean flow (for a unit mass) is

O = 2 FSiS ; S t = - (6)

and the dissipation rate of the turbulent kinetic energy k (for a unit mass) is

. iu a u;)
C-2v <s~jsj> ; , S ~ +O' (7)

2 Faxj &-,

The origin of dissipation C is the work performed by the -fluctuations of viscous stresses. When
the REYNOLDS number is large, as required to have a fully developed turbulence, it can be shown that c is

much larger than D.

-e
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2.2.3. Energy cascade - Dissipative scales

e The dissipation C plays a central -role in the description of turbulence which can be summarized as
follows.

aU
Let us consider a shear flow with a dominant velocity gradient component The source of turbulence is

au v

the shear - which imposes its time scale to the 
energy-containing eddies.

On considering the equations for k and K (obtained from the NAVIER-STOKES equation), it is shown

that an B
A
xchan

ge 
of energy takes place between the mean motion and the turbulent motion at a rate

- (u'v'> generally, this term contributes to a production of turbulent kinetic energy and therefore to

a destruction of mean kinetic energy. This energy feeds the energy-containing eddies. If the REYNOLDS num-
ber ut/u characterizing these eddies is large, an inviscid process takes place, In which the eddies beco e

smaller and smaller due to a vortex stretching mechanism. In the same time, energy is transferred to smaller

eddies. This process continues until the-REYNOLDS number characterizing the smaller eddies is of order

unity ; at this stage, the viscosity is effective and the energy is transformed into heat through the vis-

cous dissipation. The scales of these dissipative eddies are obtained from a dimensional consideration of

eq.(7). The characteristic time of s;, is -r, so that

V
~ (8)

12

On the other hand, the hypothesis that the REYNOLDS number characteristic of the dissipative eddies

is of order unity gi*:es

u (9)
V

Then, the KOLOGOROV scales which are typical of the dissipative eddies are
3 . 1/4 1/2

q ; v= (ev)
11  

; r (10)

2.2.4. Single time scale hypothesis

The dissipative scales are related to those characterizing the energy-containing eddies.

To show-this, let us consider the-fully developed flow-in-a pipe (FAVRE et al, 1972). It is easy

to demonstrate that the dissipation-rate of (K + k) averaged over the pipe-section is

0 = X -

where X is the pressure-drop coefficient, U Is the velocity averaged over the-pipe section, R is the pipe
radius. As said before, if the REYNOLDS number is large, the dissipation rate D is nearly equal to the ave-

rage of C over the pipe section.

In the case of a smooth wall, A varies as (UR/u)" 1/1 and in the case of a fully rough wall, A is indepen-

dent of the REYNOLDS number. Let us notice that in the case of the smooth wall, the viscous stresses are
larger than the apparent- turbulent stresses In a thin layer near the wall ; therefore the flow is not fully
turbulent over the entire pipe cross section. On the contrary, in the case of the fully rough wall, the
flow can be considered as fully turbulent everywhere. Then, it appears that In a fully turbulent flow, the
non dimensional dissipation rate is independent of the REYNOLDS number and, in particular, of the viscosity,

u. The paradox Is-that from eq.(7), C seems to be proportional to v. The solution is to assume that the
dissipation rate Is ruled by the energy-containing eddies.

From n dimensional analysis, the following crucial relationship results

u3

In fact, the consideration of the spectral energy equation leads to-assume that the-dissipation

4
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rate C is nearly equal to the rate of energy transfer from the large to the small eddies. As this process
takes place between eddies characterized by a large REYNOLDS number, the viscosity is not involved and the
relationship (11) seems natural.

The relationship (11) can also be deduced from the hypothesis that turbulence is ruled by a single-

time scale. Let tD be the time needed to dissipate an amount of energy u
2
.We have

U
2

tD = -C

The single-time scale hypothesis tells that

u
3

tD = 0 that is c . -

The relationship (11) can be used to determine the length P in the mixing length model (3). We
get:

- u'vl> --- (12)
cby

This is the basic relationship used in a k-c model (the velocity scale u is given as u - k
2
).

The comparison between eq.(8) and- (11) shows that the dissipative eddies have to adjust their time
scale r in order- that 4 is independent of v. Precisely, r is proportional to V11

2 .

Using eq.(ll). the ratios of energy-containing scales and dissipative scales are

- R1 R3/ ; = Rj
1
/
2  

(13)
U- 0

with 
le

These expressions show that the gap between the two families of eddies increases as the REYNOLDS
number Rt increases ; the structure of the dissipative eddies becomes independent of the structure of the
large eddies at high REYNOLDS number. The dissipative eddies become isotropic due to a scrambling effect of
turbulence.

2.2.5. Mathematical tools

Besides this description of turbulence, a few mathematical tools are used. In the transport equa-
tions governing the evolution of REYNOLDS stresses or of the dissipation rate, many terms are unknown and

require a modelling. These terms have a tensorial form and it is very suitable to model them by a tensor
which has the same properties as the original term. These properties are for example : symetry, galilean
inv,.rlance, objectivity. Very often, the original tensor has special properties when its contraction is- ta-
ken or in the case of isotropic or homogeneous turbulence. It is also suitable that the model respects the-

se properties.

Another requirement should be -the realizability (LUMLEY. 1978 ; REYNOLDS, 1987). For example, the
kinetic energy k or the dissipation rate C cannot be negative ; the correlation coefficient

1/2I<u'v'>I/(<u'2 > <v 2 >) should be less than unity ; other conditions such as the limit behaviour of one-
dimensional or two-dimensional turbulence can be useful guides for turbulence modelling. Very often, the
-realizability conditions are not examined thoroughly because they are considered as extreme cases which are
rare.in practice.

Finally, another useful tool is the invariant representation of tensors as function of other ten-
sors. From physical considerations, the main quantities which influence the unknown term are-guessed. Then
the invariant represGntation -theorems enable us to- find the modelled form of the unkfiown term taking into
account the properties of the original tensor (symmetry, invariance, ...). From dimensional argument, it is
possible to express coefficients of the modelled form as -function of turbulence scales and- finally compari-
sons with experiments help.in fixing the values of numerical constants.

2.3. Examples of turbulence models

It is not possible- to-presint all the turbulence models published-incthe literature. Here, we give
first -the REYNOLDS stress trcnjsport- equation model developed by LAUNDER et al. 1975.

The REYNOLDS stress equaticns -are derived from the-NAVIER-STOXES equations. For high REYNOLDS num-

-- . . . . . |
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ber, these equations are

D <uu;> DjJ P (14)

We have

1) PI (
=

u;uu> - + <u;u4> -J is the production term (generally this term contributes to a produc-

tion of the corresponding REYNOLDS stress, but it is not always the case).

2) D - 2v ( - -) is the destruction term. Its contraction D,1 represents the dissipation rate of

two times the turbulent kinetic energy.

p. (au; au; '
3) O ( - a- u -J) is the velocity-pressure correlation. The incompressibility condition of veloci-

ty fluctuation shows that the trace V, is zero. This means that this term contributes to a redistribution
of energy between the components <u'2>, <v'

2
>, <w'

2
>.

4) Jio b - <uu;u> - ( m (u; + u; t is the diffusion term. The diffusion is due to the interac-
tion between the velocity components and to the interaction between pressure and velocity.

The modelled form of the REYNOLDS stress equations is given by the following formulae

DIJ . 6iJ C (15)

VJ + VIJ.2 (16)

i o " CI C &> (16a)

c +8 2 30 2 a au 8 C 2
pl ps-. ~ j- - P J k ~~+-J- 1 (QI j ~PSI j (16b)

* aU aU au.

with Q - <u*u > L- - <u;u > aI1  P = - <u'u"> -.

Another form of <o J . 2 often used by LAUNDER is

.2 - C; (P, - P61,) (16c)

. <uu>a .u;u;> (17)

The REYNOLDS-stress-equations are completed with a transport equation for the dissipation rate

DC C2 au a(.k
s- C <uu , - CU. k <uaue> k-a-x (18)

The values of the constants are

C, - 1.8 ; C; - 0.6 ;-C, - 1.44 ; C2 - 1.92 ; , - 0.22; C, - 0.15

The model -for D j comes from the hypothesis that the dissipative eddies are isotropic.

The model for 3, J comes from a crude modelling of -the transport equations for the triple correla-
tion-<u u;u >.

The modelling of the velocity-pressure correlation is one of the nost difficult problems. The for-
mulae (16) are obtained by assuming that pj, is function of the turbulent stresses- and by taking Into ac-
count the properties-of the original terms.

Another difficulty is the equation for the dissipation rate c which is used to describe the length

I
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scale. This equation is subjected to many discussions and Is a weakness of the model.

Another problem is the modelling of the flow near a wall. Low REYNOLDS number versions of REYNOLDS
stress equations taking into account the proximity of the wall (in particular, in the expression of 9)p#
have been proposed but they arenot very satisfactory. A simple approach is to calculate the near wall flow
with a mixing length model and the outer flow is calculated with a transport equation model. Another possi-

bility is to use, near the wall, an equation for the turbulent kinetic energy in which the dissipation is
calculated with a prescribed dissipation length.

Very often, the complete Rh .LDS stress model is not used as such. Algebraic formulae can be ob-
tained if assumptions on the convection and diffusion terms are made.

For example, RODI, 1972, proposed that :

D <u;u;> k
<u; u;> - Diff <u; u > - - -L - DifS-t k<; ttf•- - ,~)

Using eq.(16c) for ' we get :

2 1 - C k (Pl 2

<u u;> - i 6,$k C -1 P/ k - 61P) (19)

In fact, the most widely used transport equation model is the k-C model in which the turbulent

stresses are expressed as :

,P <u; u; > - pk,, j ,, +aU
3(a -, au T)

k
2

with ti, C+ p -.

The k and c equations are

P k a PP- P- ak (20
Dta ax,)

p - - (Ce, , P - C) a (' ac) (21)

Dt k ~ ax, 9" axe)

C,, = 1.44 c,, - 1.92 C, x 0.09 ; a = I ; a, 1.3

3- EQUATIONS FOR-A COMPRESSIBLE FLOW

3.1. Various types of averages

3.1.1. Conventional decomposition

The calculation of turbulent flows is approached by using a statistical treatment. In incopressi-
ble Ilow, this leads to decompose the velocity as :

u,= <u'> +u; ; <u> =0 (22)

where u, is the instantaneous velocity <u,> is the ensemble average velocity ;u is- the turbulent
fluctuation.

The fluctuation is noted u; ; this is to avoid a confusion between the fluctuation defined from
eq.(22) and the fluctuation ui defined from a mass-averaged velocity which %ll be introduced later. In In-
compressible flow. f' - f".

The pressure is decomposed as

p = <p> +-p' (23)

In fncompressfblc flou, the average of the continuity and momentum equations gives

3
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aUl5x- o (24a)

p +. pU, ox; Ox" - Ox-3  s -

withU at (Out a_ 013k
U, . <u> P <P> ; S, 2 I ,Ox ax)

Let us notice that the difference between the instantaneous and average continuity equations tells
us that the velocity fluctuations are incompressible

au;
7- 0 (25)

In eq.(24b), the average process introduces a new unknown, the REYNOLDS stress tensor p<uu">, the
determination of which is colled the closure problem. This problem has been discussed in section 2.

In compressible flou. the existence of density fluctuations adds a freedom in the definition oF
average quantities. Indeed, the average continuity and-momentum equations are

a<p> , a<pul5  (26)
Ot 0 x,

a <p< 8bp>
Cpu1> + OL <pu, u,> = + _ < f < > (27)

The main question is to choose how to decompose <pu> and <pulug>. The decomposition of <ij> is
less important because the viscous stresses are negligible in turbulent flow. A discussion of this problem
has been done by CHASSAINO, 1985.

If the velocity is-decomposed according to eq.(22), we have

<p u,> - <p><U1 > + <p'u1> " p = <p> + p,

<pu,u> a <p><u,>Cu3 > + <'u;>Cu> + CP' Xu)u> + <p)uu> + <P'u-ut >

Many additional terms appear and the formulation of equations is very complicated.

3.1.2. Mass-weighted averages

Most of the works use a mass-weighted velocity U5. This type of average has been introduced by
FAVRE, 1958. in turbulence studies. Let us notice that this type of average is also used in statistical me-
chanics of fluids and in the studies of gas mixtures with chemical reactions, for example. The mass-

weighted velocity i, is

Cpu,>
-U= CZ ; u= + u ; <pu,> 0 (28)

In this way, we-have

<puj> <p> Ui (29a)

<pu,u> - Cp> 0, a, + <pu;u;> (29b)
and the average equations are

- + (<p> ) (30a)

ot <x> Up> a0at> off, a- ax) 2 ( + .2. -puu;>) (30b)
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with Fj <21& sj o  
't -jj >.

These equations have an "usual" form.

The concept of average stream surface has the same meaning as in incompressible flow. In addition.
the equations for <puu > are obtained in a natural way and not too many additional terms are introduced.

The danger is that the equations are too close to the incompressible case and it is tempting to
apply them an "incompressible" closure, which is not always justified.

3.1.3. Other decompositions

Another way to decompose <puu,> is to make a distinction between the quantity which is transpor-
ted (i.e. the momentum) and the velocity which is responsible for the transport (BAUER at al, 1968 ; HA
MINH et al, 1931). This leads to write :

<puluj V Oi<uj> <gj u;>

or

<puiuj> . Oj<ut> + <g; u;>

with

G, 9 <pu> ; Pul = GI + g

<gu;>- <puu> + (p'uj>

Another decomposition has been-proposed by CHASSAING, 1985

<PU0 = <p><uf> + <K> (31a)

<puuj> = <p><u1><uj> + <pu u;> + <K,><uj> + <K1 ><u1 > (31b)

with <K,> = <pu;>.

The average continuity and momeatum equations are

U~P> aa- . - (<p><uj>) a <Kj> .0 (32a)
at xi aa a

a (<p><u 1 >) + - (<P><U><U>) + - <pu~u> + <A,> + . . (32b)

with a
<A,> = a 4K> + (<K11<u > + <K ><u,>

)

In this formulation, the velocity is decomposed according to eq.(22) this has the advantage that
the classical kinematic concepts of vorticity and strain rate have the same interpretation -for the i.pstan-
taneous velocity field as-for the average and-fluctuating velocity fields.

The contribution of- turbulence appears through two types of terms <pu u;> and <pu7>. The evolution
of <puu;> is-described by a transport equation.

The contribution of turbulence through the term <pu;> Js specific of variable density flows. As
argued by-CHASSAINO, it could be useful for the modelling not to group this term with the other contribu-
tions of turbulence, because this term represents a specificity of these flows.

It should be noticed- that the correlation <pu;> constitutes a source term in the continuity equa-
tion and-it is not possible to follow a system of fluid particles closed by a stream surface.

The evolution of the correlation <pus> is not-determined by a transport equation but <pu,> can be
expressed by using the state law. In the-case of a mixture of two non reacting gases, the density p of the
mixture and the mass fraction C of one species are related by a law of the form

p epC b

where a and b-are-determined constants.

Then, we have
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<pu> (I - a<c>) • a <pc"u">

Therefore <pu> is not an additional unknown because this term is related to the flux <pc"u > which
is in the equation for the average concentration.

If the fluid-follows the perfect gas law (p = pRT), the expression of <pu"> is more complicated

<pu'"> <P"u>
M T> R<T>

For the study of mixtures of non reacting gases, this procedure is viable although it is unusual
to work with open systems.

Up to now, the application to compressible high speed flow has not been performed. Therefore, we
will use the mass-weighted averages.

3.2. Mass-weighted averages

The velocity is decomposed into a mass-weighted average G, and a fluctuation u,. The same decompo-
sition is used for the enthalpy and the internal energy ,

ul G, + ul Uf ,j <P> ; <pu;> - 0 (33a)

h -h 2h> <ph'> - 0 (33b)

(Pe>
e ' *e';" =P> <pe> ,=0 (33c)

The pressure and the density are decomposed into a classi- 1 average and a fluctuation

P p' ; p - <p> <p> . 0 (34)

p = <p> + p' ; <p'> = 0

Let us notice that the averaged velocity fluctuation <u;> is-not zero

<u; >. = <p (35)

In a general way, the classical averages and mass-weighted- averages are linked. If we define

<pf>f-.F+f' F=-

f M f> "f

We have

<pf> <pf>
F- <f0 - f" - fV <f'> *Pfl - PI- (36a)

<pr;f;> <pff.> <pf- f;> (36b)

p, r, > <P, f; >

<Pflf;> <pflf2> <p (36c)

Such relationships enable us to transform the equations written with the classical averaged velo-
citiesto-the equations written with the mass-weighted velocities.

3.3. Equations with mass-weighted averages

To simplify the writing of the averaged equations, <p> is written p. For example, we have

*U <P> Z,

____ ____ ____ _- - -
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but when p is combined with a random function inside a sign <>, the same convention does -not apply

<pul.;> = <P><u;u;>

When no confusion is expected, the sign (-) is omitted

Continuity equation

ap 
0
a

1)e- 0 (37)at axk

Momentum equation

~DU, 8-r <puu >) (8!U- ax (38)

with

D- a- a.
- = -+ Uk

DL au,

Flk - <2 % Slk m3 x-t >

li1F (2 ax, +x 1)

At high REYNOLDS number, the viscous stress Fk Is negligible compared with the turbulent stress
- p <u~u>. Near a wall, this is no longer true. Even if the fluctuations of viscosity are neglected, the
expression of-F,, is-not simple because :

8ul 8U 8 {<'u, >

aXk ax~, ax, P

Kinetic energy equations

The mean value of the kinetic energy is decomposed as

<Pu1 u1> 1 p U 1u + i <puu> pX pk (39)

The first part K corresponds to the averaged motion and the second part k to the fluctuations.

The corresponding equations are

DK -U, uU U,  . [V, (- P , <p uu>)] >QIOa)LUI P -F, 1k o;.> [--g (_ 6k F, (4a

Dk au* au, au <pu'> . .u1 kk p 8 x 8 (" u ~ p > 6 < f u > - U U ; ( 4 0 b )

1 t,  < fu) a1+

The dissipation-rate of the instantaneous kinetic energy is po * f11, -.. Its averaged value is

decomposed as P

with 2k
Fx 'I-o



3-12

with au!

aU1

S<f11, -,

4' is tho dissipation rate of tbe kinetic energy of the averaged motion which appears In eq. (40a).
<9> is the dissipation rate of the averaged 1:inet.c energy of the fluctuating motion which appears in eq.- U1

(4Ob). The exchange of energy betweon-K and k is represented by the work of the REYNOLDS stresses - <pue'u> - "

In the k-equation. the compressibility appears explicitly through two terms <p' -1> and

- -. This dos- not ean however that the compressibility cannot influence other terms.

P Oxi

REYNOLDS stress equetions

We define T,, as

T,, -,,u;u; >!p

The-REYNOLDS stress equation is

P-6-'P P PDIJ j 0P'Jj PC X P3 (42)
wtth:

with: PP1 J P Tl u j u

aXU aU"

(Ou Ouj'r) <

<pfu;) Op <p'uj> op
P C, p 3x W ax,

p j -- <PL;u,;> + <flU;> + <f.,, u;> - <p'> 1 - ,

The interpretation of this equation isr.early the-sAme s in incompressible- flow. pP,, is-the production
D1

term ; pD11 is the destruction term (p - i the dissipation of k) ; p 4'1j is the velocity-pressure
correlation ; P3 k is the-diffusion due to interactions between velocity fluctuations, due to viscosity
and due to interactions- between pressure and-volocity.

The compressibility appears eqlpicjtl, only throL b the term Cj but, once again, the modelled form
of the other terms can be influenced by compressibility. For example, the modelling of 4' is -based on the
POISSON equation for p' which is btaincd by- taking the divergence o:' the momentum equation. In this equa-

tion. mah -additional terms-appear due to the compress_*biity of the tiow

a
2
pF 02 22 02 02 432 -± (<p> ueUj)2 (p'uTu) (p'upJ) -((<p> +p' ufu- <pueu.

-- ----- - - - - -e .
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Energy equation

The enthalpy h and the Internal energy e are related by the equation

ph' pe + p (44)

L Taking the average, we obtain

<P> j <P> + <P> (45)

The fluctuations are related by:

p 70>

The total energy E is

U1

2

The mass averaged total energy Eis defined by:

<pu~u1  ;'~u <pu;>
<p> E <P> + - <p)e + 2P lu

or

E eK k (46)

We also have

El-a+ Uu; + < 2 <p>

In the same way, the-mass-averaged total enthalpy Is is

sgI(+ 2 I <p>

and

hi-h' ,u + u1u, <P>

BUSHNELL at al, 1976, mentioned that at high MACH numbers, the velocity fluctuations intensity can
represent a significant fraction of the static enthalpy because h/h, becomes very small and h, Is close to
U2/2. Now,-if. in a calculation method, the turbulenc e Intensity is not well known, it can result in an er-
ror-on the static enthalpy and-hence on the density.

The energy equation can be -written for the internal energy 9or for the enthalpy i or for the -to-

tal enthalpy 9, or for the total energy 9

In the following equations, when there is no possible confusion, the signs (-) and 0 are omitted.

p~ L ( + <91,> - p, Y11 - <p _4i - ~- + <puje') (8
Dt OX, Oxi 1  f(8

where 4)-and <V'> are the dissipation rates of K and k (eq.41). In equations (40a) and (40b), 4V and <9'> ap-
pear with an opposite sign.

Qis the averaged value of the molecular heat flux

0IT
Oxi

and <pue'> is the turbulent flux of Internal energy.

The equation-For-the mass-avereged-enthalpy Is

Oh OP a OP , <U;> OP ap, a >~ 4
p -. 4'4+ <01> + Ot + U, Ox - - + (u, -> - -...-Q' + <pU;h >Ftx O~ xi Ox, 4a
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The equation for the mass-averaged total enthalpy is

(Dhb
0 - a; <f ~U> + ,, Pk;) 4b

The equation for the mass-averaged total energy is

= P (< f),ul - <pu i>1 k - <Pu,'E1>) (50)

Equations (48), (49) and (50) can be deduced one from each other. In particular, the turbulent

fluxes are linked by the forculae :

<puke'> - <puh'> - <pu,> (51a)

<puE ' <puke'> + <P u;> U + 2 (51b)

<pukh;> - <puh'> + <pu,,u;> U, +, <pUU;u;> (51c)

Generally, the turbulent heat flux is used. Its evolution is described by the following equation

for Q,, <pu;h'> :

Q1  a Ou h Oh' aT au
-(Q1 U) <p u,,h'> -<p u~u) > - - <f~k > - <X - Cl--> + <u1 0 (52)

ft ax ti -k ax, k ak

Oh' - <p'h'> OP <u, f-> + <u, Op 0> - <puku;h'> - h'p'> &,k + <h'ftk> + <U;x

3.4. Boundary layer equations

In a two-dimensional steady flow, the boundary layer assumptions lead to the following equations

a<p>G a+<p>
a a- 0 (53a)

<P 2.u +, <P O !U! , DP + 2-(< a - <P.,.'>) (53b)
OxO Ox y a 5y

<p> a
ay y(<pv'>) (53c)

OhL, Oh1j . (u au aT
<p> u v P -5Y ay -U <pu'v'> + <\ > <pv'h'>J (53d)

It Is useful to give an order-of magnitude of certain terms. The state equation gives

p' V p' P'T'

> j <p> <p>

For external Mach numbers less than 5, the-velocity fluctuations are subsonic and the terms p-
<p>p'T'

and - are negligible, so that
<p>T

P,><p>
and we have

-<T> <p'T'> <T,2>

S <p> (' )2

l; - <u>l l<p'u'>I HIpu>l <p#
2

>'
1 2 

<u 
2
>
1
/2

<p> (<p,2><u,2>)'/ <P> u
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( p,2>1/2 <T,2>

Now. -- - -- and the correlation coefficient between p' and u' is less than 1. Then, we

have:
Iu - <u>l I<p'u'>l (T'

2
>'
15 

<u'2>'
2

G <p> G T_>

In the same way, we have

I - <v l I<p'v'>l <T
2
>
1
/
2  

<,,2>112

v <P> V T

<T,2>1 /
An order of magnitude of T> is often obtained by assuming that for boundary layers on an

adiabatic wall with an external Mach number less than 5, the fluctuations of total enthalpy are negligible.
so that

T u

<V_2>1/2 <U,
2
>1/

2

For the considered case, i- is at most of the order of 0.2 and - Is at most of the
T u

order of 0.1.

Then, we can assume that T = <T> and-u 2 <Y>., but .cn be very different from <v> because /u is
small. These orders of magnitude also show that - I - Is at most of the order of 0.02.

u <p>u

An estimation of the=turbulen"s induced normal pressure gradient can also be performed (BUSHNELL
et al, 1976). Equation (53c) shows that :

<p> + <pV,2> . cst

This expression is evaluated between the region of peak <v,
2
> located around y/6 0,1 (the pres-

sure is nearly equal to <p>.) and the wall :

<P> <v
2
>,

<P> t- <P> 
+  , U

or

<p> <v,2>,
<p>. t! <p>. + YM

2 
-

<P>P <v'2>p

Taking ' - 0.2 and -- -5 10
3
. an order of magnitude of the variation-of the static pres-

sure within the boundary layer is

- 1 + 10-3M2

The induced norm'al-pressure gradient can- be significant if the Mach number is large. However, even
in-these conditions, this is-not a- first order effect.

auNowletusxaine the tm< y. Ift iis decomposed as w= <p) + ', we have

It has been shown that Wu> <<-G. The term- <tp - ) can-be negle-,ted by arguing-that Rt depends on

or ~T and the range of frequencies concerning it' and - is-very different (it'-belongs to -the energy containing

scales whereas g~- belongs to-the dissipative scales). Finally the viscous term becomes

au a9 ou '<it++ a- ,,> -<t> 5 <y _-

The same analysis-can be performed with the terms <ui -> and <X -> in the energy equation.
ay

Therefore, -equations (53) reoften simplified as
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-- o (54a)

au au -<Pu..l>) 5PU + V U P . O -L(. 5b
ax- aV- ax ay ay

-- 0 (54)
Oy

PU ah PV "h ( L - <pulv'> U + X <p,'h'>) (54d)
ax a - ay ay ay Pv>

With the above simplifications, the total enthalpy is related to the static enthalpy by

U2

hi - h + -

Let us notice that the boundary layer equations can also be written with the classical averages

(instead of the mass-weighted averages as -above). In this case, th>equations have exactly the same form as

equations (54) but the vertical velocity is replaced by <v> + 
-.

P

4 - PECULIARITIES OF TUR1ULENT COMPRESSIBLE FLOWS

4.1. Variations of density and temperature

The flows under consideration are characterized by a high Mach number and very often by a heat

transfer at walls. Therefore heat is produced by direct dissipation and tranzferred by the turbulent

fluctuations.

These phenomena imply a non uniform averaged temperature and density, which influence the velocity

field.

In a boundary layer developing-on an adiabatic wall, the large amount of dissipation near the wall

leads to a large static temperature in-this region. Then the kinematic viscosity is larger than near the

external edge of the boundary layer and the local REYNOLDS number is smaller. Compared with an incompressi-

ble boundary layer, the viscous sublayer is thicker.

Th3 variation of density in itself does-not imply- a modification of the turbulence structure. For

example, the study by BROWN and ROSHKO-of a low-speed mixing- layer with a mixing of gases with different

densities showed that the spteading-rate of the layer is not-affected by the variation of density. On the

contrary, the spreading rate of a mixing layer of air is significantly reduced in supersonic flow. This

means that there is a genuine compressibility effect-in this case. It is not clear however if this is due

to an affect on the turbulence structure. At least partly, the reduction of the spreading rate can be- at-

tributed to an effect of compressibility on the stability properties of the flow which are at the origin of

the large scale structures. PAPAMOSCHOU-ROSHXO studied ten configurations of free shear layers obtained by

using the flow of variousgases (N2, Ar, He) at various MACH numbers (between 0.2 and 0.4). These authors

introduced a convective MACH number which is defined in a coordinate system moving with the convection ve-

locity of the dominant,waves andstructures.of the shear layers. The theoretical analysis is -performed by

studying the stability of a compressible inviscid vortex sheet. PAPAMOSCHOU-ROSHKO showed that the-growth
rates of the various free shear layers fall nearly onto a single curve. This result indicates that the shear

layer question is- more-related to a stability problem than to-a turbulence problem.

11.2. Decomposition of the fluctuatinx field in three modes

Another feature of compressible -flows is that all the flow characteristics are fluctuating : velo-

city, temperature, density and pressure.

KOVASZNAY showed-that these fluctuations can be expressed as a function of three basic modes (see
FAVRE at al) : fluctuations of vorticity. entropy and pressure (acoustic fluctuations) and when the level

of fluctuations is low, the equations describing the evolution of vorticity and pressure are separated.
(The correlation coefficients- between the various modes are not necessarily low).

When -the fluctuations are -no longer low, a second-ordertheory-predicts various possible interac-

tions between modes. In supersonic flows, a strong interaction is the vorticity-vorticity interaction which
is at the origin of the aerodynamic noise.

These flows are also characterized by-the pressure fluctuations (which are isantropic) which can

] . . . . ... . . . . .. . . .... . . . . .. . . . . . . .. . . . . . . .
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be transmitted over long distances as MACH-waves. The loss of turbulent energy by sound radiation is low
but the radiated energy can have a strong effect on the laminar-turbulent transition. In supersonic and hy-
personic wind tunnels, the transition on a flat plate or on a cone is strongly dependent on the noise gene-
rated by the turbulent boundary layers developing on the test section walls. The transition location Is cor-
related with the test section-size because the noise affecting the transition depends on the distance bet-
ween- the model and the tunnel walls.

The role played by the pressure fluctuations in the turbulence modelling can be very different in
au'

compressible or incompressible flows. For example, the influence of compressibility on the <p, -> term

appears through the POISSON equations (43) for the pressure which contains much more terms in a compressi-
ble flow.

The averaged pressure gradient can also modify the processes of turbulence generation or destruc-

tion in supersonic flows. The pressure gradient can be very strong (through a shock wave or an expansion
<pl'>

fan) and the interaction with the term - In -he turbulent kinetic energy equation can be significant.
This also means that the wall curvature 

p
is an important parameter because it implies the existence of a

normal pressure gradient and an effect on the turbulence.

4.3. The MORKOVIN hypothesis

Let us go back to the decomposition of the turbulent field into three modes : vorticity, entropy
and acoustic pressure. At low Mach numbers in an isothermal flow, only the vorticity mode remains. In a
compressible flow, if the vorticity generation by interactions between modes is negligible, the turbulence
structure is unaffected by compressibility (the possible vorticity generation interactions are vorticity-

entropy, vorticity, acoustic pressure, entropy-acoustic pressure).

From experimental data, MORKOVIN, 1961 showed that the acoustic mode and the entropy- mode are ne-
gligible in boundary layers with usual rates of heat transfer and M. < 5.

According to MORKOVIN, these flows are such as

\ p T;
<<1 -«<<1

T,

Using the state law and assuming that the velocity fluctuations u'/U are not too large, we have

p, T' 1)M u-
p T U

The following relationships are deduced

<2>1/2 -T2I2<.>1I/2

-(2 ('e - 1) M2 (u'
p T U

5<u)T'>
((U,2>(T2>)l/2

This is the so-called strong REYNOLDS analogy. In-fact, the basic hypotheses presented above are
not very well founded and Improvements of the analysis have been proposed by GAVIGLIO, 1987. Nevertheless,
pra.tical results such as formulae (55) can give reasonable orders of magnitude. For example, In a boundary
layer on an adiabatic wall in supersonic flow, ru... is of order - 0.8.

The use-of the strong REYNOLDS analogy must-be done with care, In particular when the flow under-
goes rapid variations.

It should also be noticed that some of the formulae deduced from the strong REYNOLDS analogy are
not galilean invariant ; this Is the case-of the formula (55a) because-

2
/U Is not galilean invariant.

o <p,2>1/2

BRADSHAW, 1977, associated the validity of the MORKOVIN-hypothesis with low values of-

For boundary layers with-an external MACH number lower than 5, the condition is fulfilled as is
smaller than 0.1. BRADSHAW noticed -that at higher MACH numbers, the total temperature fluctutionsare no
longer negligible but when the wall Is cooled, the level of temperature and density fluctuations increases
only slowly %tth the-itACH-number. At these higher MACI numbers, the pressure fluctuations increase and the

i . .. .. .. .... . . .. .. . ..... .. ... . . ............ ... . . .
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turbulence structure can be affected (pressure-vorticity and pressure-entropy interactions can generate

vorticity fluctuations).

BRADSHAW also noticed that in free mixing layers, the level of velocity fluctuations <u'
2

>)"
2

/U

can reach 0.3 so that the density fluctuations are larger. This implies that the limit of validity of the

MORKOVIN hypothesis (<p,2>1/2/p < 0.1) is limited to external MACH numbers less than 1.5. This is In rough
agreement with experimental data but as already said, it is riot clear that the effect of MACH number on the

spreading rate of the mixing layer is due to an alteration of the turbulence structure or to an effect on

the stability of the flow (which is at the origin of the large structures).

The "Incompressible" behaviour of boundary layers in supersonic flow can be illustrated by examin-

ing shear stress profiles (figure 3). MAISE and McDONALD, 1968, determined the evolution of the shear stress

in a flat plate boundary layer at M. - 0 and M. - 5 for a REYNOLDS number Re - 10
4 

and an adiabatic wall.

The comparison of the profiles - <pu'v'>/r, shows that the effect of compressibility is small. Similar re-

sults have been obtained by SANDBORN up to M, - 7. In the same way, quantities like <pu'
2
>/Tr are not affec-

ted by compressibility (SANDBORN, 1974).

MAISE and McDONnLD also showed that the mixing length distribution Is nearly independent of MACH

number. This means that the turbulent shear stress is expressed as

- <pu'v'> -Pt p a (56)

where t16 has the same evolution of y/6 as in incompressible flow (figure 4). This-formula-can be used to

calculate equilibrium or near equilibrium boundary layers, but no shock wave-boundary layer interaction for

example.

Many features of supersonic boundary layers are close to the incompressible case but some effects
of- compressibility on turbulence structure can be noticed. For example, the intermittency function defined

as the fraction of time that the flow is turbulent is sharper in supersonic flow ; this means that the re-

gion with intermittent turbulence is narrower in supersonic flow (figure 5).

The entrainment coefficient is also affected by the MACH number. Compared to an equivalent bounda-

ry layer In incompressible flow, the entrainment coefficient of a boundary layer on an adiabatic wall is
approximately doubled at M, - 5.

4.4. Compressibility transformations

The idea that comprcssible flows behave like incompressible flows leads many authors to look for

transformations which reduce- the study of compressible flows to that of an equivalent incompressible flow.

In fact, there iS no method which enables us to -transform- exactly the equations of a compressible

boundary layer into Incompressible equations.

Among the various problems, we can cite the presence of large temperature gradients normal to the

wall, the dissipation effects, the fluctuating density terms, ... which have no counterpart in incompressi-

ble flow.

The idea of compressibility transformation is however used for specific purposes. Let us give two

examples : i) the study-of the law of the wall and ii) the construction of a skin friction law.

4.4.1. Compressibility-transformation for-the law of the wall

The law of the wall is obtained by assuming that, near the wall, the shear stress is constant

- <pu'v'> - r

Assuming that the mixing length is 9 >V, a transformation of velocity is defined

U. dU (57)

which leads-to the law-of the wall :

U- - n - C ; un (2/p-)C/2 (58)

If compressibility effects are negligible, x and C have the same values as in incompressible
flow x - 0,41, C • 5.
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The law of the wall can be explicited for the physical variables if a velocity-temperature rela-

tionship is available. A general law is not known and a reliable formulation of the law of the wall only

exists for a boundary layer developing on an adiabatic wall. for modercto pressure gradients and an external

MACH number less than 5.

Using the CROCCO relationship

T T.+ (Ti, - T,.)U
l U,

or
P. T ('C ',(u 2

_P T, U, T % U

We obtain the solution proposed by VAN DRIEST, 1951

U- sin- , s in B (59)

(B + 4A2)'+ 4A2)' 2

with
A
2 . Y 1 . m2 T,

2 ''F,

'IM L - 1

B -(1 + 2 ~.M) . 1

4.4.2. Compressibility transformation for the skin friction law

In compressible flow, the flat plate skin friction law has been- derived with success from the con-

cept of reference enthalpy.

Using a density p" and a viscosity-p evaluated at a reference-enthalpy h
°, 

the skin-friction law

of the flat plate -boundary layer in compressible flow is assumed to follow- the same law as In incompressi-

T 0.0184 = (60)
P*U. (P.U.x)2/

where x is the distance from the flat plate leading edge.

Formula (60) can be written as

C, r 0.0184 p,Ux
2= pA R1

6  (61)

where

1 /6 - E, /f Il ' Ia''

Mhe compressibility function f is evaluated from the reference enthalpy given by the MONHAGAN
formula

h" h, + 0.54 (h. -- h,) + 0.16 (h d - h.)

where h, is the recovery enthalpy:

It should be noticed that this simple method gives the right evolution of skin friction with MACH

number and wall temperature.

4.5. Transition and low REYNOLDS number effects

To study this problem, BUSHNELL et al, 1975, characterized the-boundary layer with the parameter V
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based on the thickness :

where the index "max" refers to the maximum shear -r in the boundary layer.

Qualitatively, the importance of low REYNOLDS numbers are given in a (6.R.,) plane (figure 6).

This diagram shows that the effects of 2ow REYNOLDS numbers can be important even if the REYNOLDS

number R. - -2- is large. BUSHNELL et al observed that the level of the mixing length in the outer region

can be doubled or more when V" is of order 100 (figure 7a). However this increase is a function of distance
downstream of transition (compare figures 7a and 7b) ; it takes about a distance of 30-50 8 to wash out the
low REYNOLDS number effects.

BUSHNELL et al also insist on the "precursor transition" effect. This effect is chacacterized by
the existence of large scale disturbance in the outer region of compressible boundary layers far upstream
of the nominal transition point. In practice, this effect implies that the outer boundary layer (velocity
profile, ...) departs from the laminar state well upstream of the nominal wall transition location. BUSHNELL
et al mentioned a possible further manifestation of this effect which is the increase in surface heating
upstream of the conventional transition point (figure 8).

The transition onset is greatly affected by compressibility effects : influence of MACH number,
influence of wall to boundary layer edge temperatures ratio. ARNAL used the e"-transition criterion to eva-
luate these effects. Lot us recollect the principle of this technique. The stability properties of laminar
boundary layers are determined by solving the ORR-SORMERFELD equations. These solutions indicate whether
small perturbations are stable or unstable (the perturbation are waves characterized by their frequency and
wave length). Another result of these solutions is the amplification rate of the unstable waves. Then, it
is possible to calculate the total amplification rate A/A0  of the most amplified waves. The transition

criterion introduced by VAN INGEN, 1956. and SMITH-GAMBERONI, 1956, tells that transition occurs when A/A.
reaches a critical level e". The factor n is an empirical input which characterizes the quality of the ex-
ternal flow : when the external flow is noisy, the-value of n is small (in noisy supersonic or hypersonic
wind tunnels, n - 2-4) ; in a clean environment, n is of order 8-10 (BUSHNELL et al, 1988).

The calculated-effects of-MACH number (adiabatic-wall) and of the wall to edge temperature ratios
are shown in figures 9-and 10. Let us notice that these results are at least in qualitative agreement with
experimental data. For a boundary layer developing on an adiabatic wall, an increase in MACH number stabi-
lizes the transition (the transition REYNOLDS number is larger) except in the range 2 < M < 3.5, where the
opposite effect is observed (figure 9). Figure 10 shows that, for a given MACH number, a cooling of the wall
increases the transition REYNOLDS number compared to the case of an adiabatic wall at the same MACH number.
It is also noted that the beneficial effect of wall cooling is less pronounced as the MACH number
increases.

4.6. Turbulent heat flux

The diffusion of heat in a turbulent boundary layer is due to the molecular diffusivity and to the
transport by turbulence. The corresponding fluxes are :

Q - E and Q, - <pv'h'>

When the flow is fully turbulent, the ratio Qt/Q, is large and the thermal transfer is mainly due
to turbulence.

As already seen, the correlation-between velocity and temperature fluctuations is good. The coef-
ficient I<v'T'>I/(<v'

2
><T'

2
>)

2 
can be of the order 0.6. Then, the order of-magnitude of Q,/Qj is

Qu~ <T U h/

Q, AT

where 5 is the PRANDTL number and-AT is a characteristic temperature difference within the boundary layer.

Thus the- thermal turbulence is characterized-by the PECLET number

T. R151
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For uir. the PRANDTL number is close to unity so that the thermal field is fully turbulent for the
same range of REYNOLDS numbers as the velocity field.

Then, the turbulent heat fluxes are often analyzed by using the turbulent PRANDTL number ?1 defin-
ed as:

<pu'v>I <pv'T'>~ ~ iTI ~(62)

In certain analyses, the value 9 1 I is taken. This is the so-called REYNOLDS analogy (which is
different from the strong REYNOLDS analogy).

For flat plate boundary layers in air, the turbulent PRANDTL number is of order 5 - 0.8-0.9 with
a tendency to increase near the wall and to decrease near the outer edge.

No systematic effects of MACH number, low REYNOLDS nuuber or blowing have been observed (BUSHNELL
et al, 1976).

The date of BLACKWELL at al show a decrease in 91 when the pressure gredient is positive (see
LAUNDER, 1976).

The value of the PRANDTL number can be influenced by boundary conditions. For example, on a rough
wall compared with a smooth wall, the increase in heat flux is less than the increase in the skin friction.

On the other hand, the value of the PRANDTL number depends on the type of flow. In free flows, T,
is significantly less than unity in the central part of the flow. For rouni jets, Tt is of order 0.7. For
wakes, values of order 0.5 have been measured. This means that calculating a compressible turbulent flow
with a turbulent PRANDTL number is a simple solution but not the best.

KThe analogy between the fluctuations of velocity and temperature has been extensively studied by

FULACHIER and ANTONIA. They found that there is-a good analogy for the energy-containing part of the spec-
tra of the -temperature fluctuations and of the total velocity fluctuations ; this result has been-obtained

for different types of flows.

These authors also showed that the spectral distribution of the PRANDTL number is not at all uni-
form. The -analogy between -velocity and temperature fluctuation is analyzed by using the parameter B

aT

B<q-2>1/2 -a
<T,2>

1
/
2 
aU
ay

where q' is the fluctuation of the total velocity.

FULACHIER and ANTONIA observed that B varies from flow to flow but is- nearly constant within a gi-
ven flow. In addition, the spectral distribution of B is nearly uniform (except for-high values of
frequency).

4.7. Other problems

A3 already seen, the compressibility of the flow adds many complexities as compared to the incom-
pressible flow. The list of problems-discussed in-this section is not complete and many other effects could
be cited.

The hypersonic vehicles- often have a blunt shape so that a bow shock wave exists in front of them.
Then, the streamlines which cross this shock wave do not have the same-entropy jump and the boundary layer
is fed with-variable entropy streamlines , the associated variations of free stream characteristics normal
to the wallcan be large. The influence on the turbulence structure is not known.

Instability like GORTLEA vortices can develop in supersonic or hypersonic flow. This has been ob-
served -in the flow on a compression ramp for example.

The shock wave-boundary layer interaction is obviously a problem of prime importance in transonic,
supersonic and hypersonicflo This topic has been reviewed by DELERY, 1988 in great details.

TT
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5 - TBRBULENCE MODELS

Most of the turbulence models used in compressible flows are based on the eddy viscosity formula-
tion. Accordingly, the turbulent shear stresses are expressed as

2 1s a__ S auaH,(3
<puu> -+ 3pk6, • , (se " .3 pS (-t E-:) (63)

One drawback or this model is that the principal axes of the REYNOLDS stress tensor are aligned
with the principal axes of the rate of strain tensor. To take into account the possible non alignment bet-
ween-stresses and rates of strain, SAFFMAN and, later, WILCOX and RUBESIN proposed a more complex constitu-

tive relationship. 
These latter authors 

used :
- <puu;> + pk&,j - 2, , "j "L"U .+ k s..s..) (64)

3 ((U 3U

with R,1  2 aOxj Ox "

WILCOX and RUBESIN used this formulation in a k-i two-equation model where W is the rate of dis-
sipation per kinetic energy unit (( - elk).

The constitutive relationship (53) or (64) is not sufficient to express the REYNOLDS stresses be-
cause 1z is not known. The eddy viscosity is determined either by a zero-equation model (mixing length mo-
del) or by a one-equation model (generally the k-equation) or by a two-equation model (k-E or k-0? model
for example).

In addition, the solution or the mean energy equation requires the modelling of the turbulent heat
flux <puh'> which is generally expressed via a PRANDTL number

<puh'> a (65)

The solution of the energy equation also requires the modelling of the triple- correlation term
<puu;u;> (eq. 51). This term Is the main contribution of the diffusion term in the k-equation (eq.40b).
The formulation used in incompressible flow is generally retained

1 <puiu;u;> a, (66)" "~o T x- 66

where a. looks like a PRANDTL or SCHMIDT number. (In the k-c model or LAUNDER et al, a,, - 1).

The expression (66) shows that it is necessary to know the evolution or the turbulent kinetic ener-
gy k. In the one-equation or two-equation model, the k-equation is included. If a mixing length model is
used, the calculation of k from the constitutive law (63) is not possible but the application or this model
Is generally restricted to boundary layer type-flow, in which case the triple correlation is-neglected in-
volving the -boundary layer assumptions.

5.1. Mixing length scheme

5.1.1. Model of MICHEL et al

The mixing-length scheme developed by MICHEL-et al. 1969. has been used in compressible flow. Tho

extension Is very straightforward and consists of using the local density as in formula (56).

This model is used for boundary layers where the expression of the turbulent stress - <pu'v'> is

-p uv> p F2 t, (67a)

In this expression. 9 is the mixing length which is given as a function of the distence from the
wall y/& reduced by the boundary layer thickness. The formula is the same as in Incompressible flow

0.085 tanh ( x 0.41 (67b)

-6_8 --

06
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au
The damping function F is given as a function of T - y- - <p u'v'> by the relationship

F 1- a (Tp)/2J (67)

This formula is a modified form oF the VAN DRIEST damping function (the VAN DRIEST formula is ob-

tained by taking the values of T, p and p at the wall in eq.67c).

The turbulent heat flux Is calculated with a constant PRANDTL number (61t 0.89)

<pv'h> p .p 
2
j
2 

U h (67d)
h -- y

Although this model is a very crude extension of the incompressible scheme, it enables us to re-

produce correctly the compressibility effects in supersonic boundary layers not too far from equilibrium.

This model has also been used to construct self-similar solutions which produced the closure relationships

of an integral-method (COUSTEIX et al, 1974). This integral method also gives good agreement with experimen-

tal data for compressible boundary layers not too far from equilibrium.

5.1.2. CEBECI-SMITH model

A more complex model has been developed by CEBECI-SMITH, 1974. This is also a mixing length scheme

where the eddy viscosity is expressed by a two-layer formulation.

In the outer region of the boundary layer, tt is :

"c:p Ut 61i (68a)

with i (1- f dy ; c- 0.0168.

In the inner region, Vt is given by a

p1 2y
2 
(1 - e"Y/) /A 2 _ (68b)ay

The two formulae are matched at the point where *L,, a pto"

The damping functton is obtained by extending the VAN DRIEST proposal taking into account the ef-

fects of pressure gradient and wall blowing (or suction) :

p... _12 ) / :

A * 'jPI.1 I!~ (68c)

N
2  -i - i - exp 1.8 -L. V.Jj exp 1 -. VJ (68d)

* v 
fdU. j/

2

In -these formulae, the index w means that a quantity is calculated at the wall and the index-e re-

fers to the outer edge of the boundary layer. The quantities without index are calculated at the point whe-

re A is evaluated. The quantity V. is the wall transpiration velocity.

The coefficients K and A' are function oF the REYNOLDS-number

K .-0.4 + 0.19 (68e)
1 + o.49 z2
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A* •26 + 14 (68f)

with Z R8 10
3 

> 0.3 ;Re • 0 f P- - dy.
lit 0 P.U. U' ) ~'

The turbulent heat flux is also given by a two-layer model

ah
<pv'h'> P - p a y

In the outer region. the eddy diffusivity is :

a -l U. , a 0.0168 (69a)

In the inner region, the eddy diffusivity is

a 1  * i oc.~, y U (1 - e 
y/
A ) (I - e"

Y/ 
) (69 )

where A is given by eq. 68c and B is

-L T 1/2 1/2(6)B W, I-I' (69o)

where N is given by eq. 68d.

The coefficients ih and B" are function of the REYNOLDS number. For air, the formulae are

, -0.44 0.22 69d
1 - o.42 Z,2

15 + 25 (69e)1 + 0.55 z2'

with Z- R010"
3 
> 0.3.

In the case of a fluid with constant properties (p - cat, p * cat), the turbulent PRANDTL number
in the inner region as given by the CEDEI-SMITH model is :

Pt K I - ey */A*

aC 1 - e"Y/B

At the wall, we have

B
°

K' A '

and in the fully turbulent region (y' - o)

rh

For high REYNOLDS-number, 51, 1.22 for y * 0 and Tt' 0.91 for y '* .

The experimental data show that, near the wall, the turbulentPRANDTL number 51t depends on the mo-
lecular PRANDTL number 5'. Away from the wall, in the fully turbulent region, it can be assumed that the
characteristics of turbulence (for velocity and temperature- fluctuations) are independent of the fluid pro-
perties so that it seems reasonable to assume that 51, is not influenced by 91.

NA and HABIB, 1973, using experimental data obtained with fluids of different PRANDTL number
(0.02 < F< 15). proposed to take into account the effect of 91 on B'

(0.0_ _ <
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~S

i,,l

C, 34.96 C 2  28.79 C3 33.95; C4 6.33 ; C5  1.186.

Let us notice that in the outer region, vt and a, are sometimes multiplied by an intermittency
function ^ :

- (1 + 5.5 (Y/6))6)
"
1

At high REYNOLDS number,, the influence of its inclusion is small.

5.1.3. BALDWIN-LOMAX model

The CEBECI-SMITH model has been modified by BALDWIN-LOMAX. 1978, for applications to NAVIER-STOKES
solutions. A difficulty with the CEBECI-SMITH model is that the thickness &,, is ill-defined In separated
flows. In the BALDWIN-LOMAX model, the length scale y. is obtained from the vorticity distribution. It is
claimed that this length is well defined and easily computed for a wide class of flows.

The BALDWIN-LOMAX model is also a two-layer model. The expressions of tt, and p,,are

1Z'1. p (0.41 y d) 4w w (70a)

pt - 0.0269 p FwY (70b)

W is the i-th component of the vorticity-vector. "r is the intermittency function

+ 55 (0 y:.'J'
d is the VAN DRIEST damping function and y. is the length scale defined as the outermost value of

y-where the function F - (y foiw d) has a local maximum F.. P, is given by

F, - y, min m . 0.25 F.2

where (OU)..x is -the maximum velocity-differece in the-boundary layer at a given x-station.

The BALDWIN-LOMAX-model has been mainly used for-solving the averaged NAVIER-STOKES equations with
the thin layer approximation (in this approximation, the longitudinal diffusion is -neglected but no assump-
tion is- made about the pressure gradient which is normal to the wall). It seems that this model has not been
widely- tested for flows with strong heat transfer.

MARVIN and COAKLEY indicate that the CEBECI-SMITH and-BALDWIN-LOMAX models give similar predictions
of both attached and separated boundary layer flows for low to moderate supersonic flows. The predictions
of attached flows are usually in good agreement with expe,Ament but the predictions of separated flows are
frequently deficient. At hypersonic speeds, the models also tend to give similar predictions although there
is some evidence that the BALDWIN-LOMAX model may be more sensitive to MACH number-than the CEBECI-SMITH
model.

In a general manner it can be said -that the zero equation models are able to give rather accurate
results even at high-MACH number as far as boundary layers not too far from equilibrium are concerned. It
should be noticed that these flows are common in supersonic and hypersonic flows and that is why these sim-
ple models are attractive ; in addition, they are easy to use and economic. As mentioned by BUSHNELL et al,
1976, it is interesting to notice that the adjustment of constants (for exnmple in the CEBECI-SMITH model,
the effects of-low-REYNOLDS number or of pressure gradients or of wall blowing) is essentially obtained from

incompressible data.

The calculations of shock wave-boundary layer interactions with the above models are not very good.
Ad hoc modificationa have been proposed to handle these flows with more or less success (see DELERY, 1988).

5.2. One-equation models

Most of one equation models inuse today are based on the solution of the turbulent kinetic energy.
Among the first authors to develop this type of procedure, we can cite GLUSHKO, 1965, and BRADSHAW-et el,
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1967. This type of model has-been used in particular at the 1968 STANFORD Conference (BRADSHAW-FERRIS,
BECKWITH-BUSHNELL) for the calculation of incompressible boundary layers.

5.2.1. BRADSHAW et al model in Incompressible flow

Let us recollect the main features of the BRADSHAW et al-model.

This is a model for the outer part of the boundary layer only ; this characteristic is very common
when transport equations are used.

In incompressible flow, three hypotheses are introduced- to close the system formed by the momentum

equation and the k-equation. The first hypothesis is to assume a constant ratio between the shear stress

and the kinetic energy *

t - <pu'v'> - 2apk a, 1  0.15 (71a)

The second hypothesis consists of expressing the dissipation rate by means of a dissipation L :

C L (71b)L

where L is a prescribed function of y/6 (figure 11). This closure relationship is close to the basic formu-
la (eq. 11).

The third hypothesis concerns the diffusion term (in the y-direction) which Is given as

Diffy (k) = a-y[ -t a)x )1710)

where 0is a prescribed function of y/6 (figure 11).

The weakness of the model is the prescription-of the dissipation length but this length-seems to
be more invariant than the-mixing length.

5.2.2. RUBESIN model

Another way for the closure of the k-equation is to express the turbulent shear stress by the eddy
viscosity model (eq. 63). Then, the dissipation rate is given by c - k

3
/
2
/L and the diffusion term is given

by eq. 66. In such a model, the eddy viscosity g, is expressed by a PRANDTL-KOLMOGOROV formula g, - p 'IN L.
Obviously the length scale remains unknown- and has to be prescribed.

These -hypotheses are the-basis of the model developed-by RUBESIN, 1976 who extended the OLUSHKO

model to compressible flows.

In this model, the turbulent shear stress is calculated from the eddy viscosity formulation (63)
with:

t F(Rt) (72)

where R, is a turbulence REYNOLDS number defined as :

R p L (73a)

The function F is given by

Rt 
If A, < 0.75

F(R1) c Rt  " (, - 0.75)2 if 0.75--R < 1.25 (73b)

it 1.25< 1

where R, -Rt/Ro. a and-Ro are constants.

The length scale L is a-function of . y/6
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y if <0.23
L 6 + 0.37)/2.61 if 0.23 q Y < 0.57 (73c)

(1.48 - )/2.52 if 0.57 y < 1.48

The turbulent heat flux is given by

Oh
<pv'h'> * - pat L- (74)

with pat = F(r'R).

The dissipation rate and the diffusion term of the k-equation are

= -Ck (75a)

Diff(k) = - Ok (75b)

with = + F(R t).

The constants of the models are :-: m 0.22, C = 4.69, Ro = 120, X 0.4, r 1.1.

5.2.3. Compressibility terms

The complete modelling of the k-equation requires the knowledge of the compressibility 
terms -

P
Ou]

and <p' ->.
Oxi

At NASA AMES, RUBESIN, 1976, proposed- expressions given below.

First asauming that the fluctuations of total temperature are negligible and that the velocity

fluctuations are small compared with the-mean velocity, one obtains

U ,

T' - - iU (76)

In addition, it is assumed that within an eddy, the fluid has-a polytropic behaviour, that is

P' p' n T'
= n p n-1T (77)

Combining eq. (76) and (77). one get3

P, P Vu, ; (78)
P'= (n - 1) CpT

From this expression, the correlation <plu;> is deduced

<pu;> U1
- (n-l)%T <u;u;> (79)

The correlation <uu> is approximated by-<pu;u;>/p and, using the eddy viscosity model, the cor-

relation <p'u> is given by :

21 1 an, - p - k 86 (80)
(n - 1) CPT (Sj 3 Ox,) 3 j

where (n - 1) appears as a modelling constant.

If the mean velocity is larger in one direction (let us say 3. 1), eq. (79) can be written as
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<P'u; > - -
'~ -< > 181a)

p (n -1) CPT u

or, approximately, as

k <P'u;
-' 'U, - a2 

- (r- 1) CPT (81b)

where ca is a model constant.

In this expression, a MACH number k"/
2
/a formed with the turbulent kinetic energy appears. Let us

notice that expressions (81) are not galilean invariant.

Another possible model for <p'u;> is to use eq. (77) directly to deduce

<plu;> I

p (n - 1) T (T'u;> (82)

Then a model for the turbulent heat flux can be used to express <p'u;>.

The various models for <p'u;> do not seem to have been largely tested. In most of the published
work from NASA AMES, this term has been neglected.

The modelling of the other compressibility term <p' -> is based on the assumption of a polytro-
axi

pic behaviour-of the fluid (eq. 77) :

0u1  p Ou

-p':> -n - W<p

Using the continuity equation and assuming a slow-variation of the-turbulence intensity along a

streamline, RUBESIN arrived at :

au <p-2> ap-

The quantity - can be estimated from (eq. 78). VIEGAS-HORSTMAN, 1978, used the expression
p2

au, Cv  aOl
<p. _-4 . - p2 -R' (83)

axi C, Oxt

where H is the local MACH number of the averaged flow ; CP and C, are constant pressure and constant volume
specific heats. E is a model constant (E - 0.73).

To summarize, the turbulent kinetic energy as used by VIEGAS-HORSTIAN is

O + F 0 p2 " _ + Ck 0 a k) (84)

Let us also notice that the energy equation of the averaged flow (for example the equation for the
total enthalpy) can be-solved by using eq.74 to express-the turbulent heat flux and the triple velocity
correlations can be expressed by eq. (66).

5.3. Two-equation-models

Basically, the two-equation models are eddy viscosity models in which-the REYNOLDS stresses are
expressed by eq. 63 and the turbulent heat fluxes are obtained from a turbulent PRANDTL number.

The eddy viscosity coefficient involves the use of a velocity scale u and a length scale Z. The
idea of two-equation models Is to calculate these scales from transport equations. Instead of using equa-
tions -for u-and L, it is possible- to form transport equations for any two combinations of these basic quan-
tities. Several couples of variables are possible, for example (k-c), (k-0 ), (q, 0)). ... (0 is the dissi-
pation rate of kinetic energy per unit of kinetic energy ((a c/k) and q is the-square root of kinetic
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energy (q k1
2
)). Then the tidy viscosity is

k
2  k q2

Very often, the transport equations are extended-from the incompressible case by simply using the

local averaged density where it is required.

5.3.1. q-t model (COAKLEY. 19C3)

Among the various models tested by COAKLEY, 1983, for calculating shock wave/boundary layer inter-

actions in transonic flow, it seems that the (q-w) model has some advantages ; in particular, this model is
claimed to be easier to incorporate in the solution of the averaged NAVIER-STOKES equations. The numerical

aspect of a turbulence model is very important ; a gocd physical model is not useful if it leads to untrac-

table numerical difficulties. It is probably one of the reasons why zero-equation models remain- popular In
the solution of NAVIER-STOKES equations and why more-elaborated models have not yet known the same success.

The (q-s)) model proposed by COAKLEY consists of the following set of equations

- (pq) + 
L (qUj) Hq + I(, + L (85s)

L9- (po)) + L (pwu,) 
= 
H , + li _L I(, + ) W1, (85b)

a O
(at ax a) o' '-' 57)

C"Dpq
2

x (c, jC)l 1 
"

H,. 0.09 i, = O. 05-D +-O.045 C= 0.92

0o.9 , 2 au .3

RI is a turbulence REYNOLDS number which is defined as H,, = qy/v (with c = 0.0065) or as

RH , q
2

/tn (with o 0.0018). Various values of 0-have been tested (0 < 0 < 1).

tho wall, the boundary conditions are :q =0 ;- 0y= .

Itg is interesting to notice that this model is valid throughout the boundary layer, between the
wall ad the outer edge, without the-need-for additional terms in or~der to have a-corret behaviour of q

near the al! This is in contrast with the-k-E models-presented below.

1/2~
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5.3.2. k-c model (JONES-LAUNDER)

The low REYNOLDS number version of the (k-c) model by JONES-LAUNDER, 1972. is

(pk) + - (pkU . , + + 7x (86s)

(pf) + i- (PCU ) - 2: x (86b)

k2
iA - C, Dp -

C 2 3 'U)2

D - exp(1 + O.02Rt ) E I 1 - exp )

0, 0.09 ; C,, - 1.45 C C'2 - 1.92 ; - 0.9 ; 1j= ; 1 , 1.3

The model proposed by CHIEN, 1982, is a modified version of the JONES-LAUNDER model. In the expres-

sion of H., the term - 2v (ay) is replaced by - 2P yL ; in Hz, the term 2C0Dv k3 2)2 
is replaced by

95y y2C
2 ay

2

- 2v -F. The expressions or D, E and F are
y2

D - 1 - exp(- 0,0115-y') y " - I-

2 k
2

E - - exp -6 ' R

F , exp(- 0.5 y*)

C,, = 0.09 ; C,1 - 1.35 ; C, * 1.8

, --0.9 ; o, -1 ; , l.3

These (k-C) models are neither better nor-worse than the (q-cj) model, but the-numerical experience
reported by COAKLEY, 1983, Is that the (q-j) model has essentially the same degree of numerical compatibi-
lity as the zero-equation model of CEBECI-S Im.

5.3.3. k- model (WILCOX. 1988)

Recently, WILCOX, 1988, examined the performances of three tv2-equation models : the k-C JONES-
LAUNDER model, the k-o? WILCOX-RUDESIN model and a-new WILCOX k- model where the REYNOLDS stresses are gi-
ven by eq. 63 and the eddy viscosity Is

k

The k-ca equations are

~(pk) --- (p'Jj Ic) < pu; u;> al- --0* pw 77) r-1ay ( x
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wih 0 = 100 9 *2

This model is also used in compressible flow. In this case, the turbulent heat flux is obtained
from a turbulent PRANDTL number.

The model is used near a wall without any additional term and the wall boundary conditions are
k - - (balance between molecular diffusion and-dissipation in eq. 87b). In a boundary layer, this0y,

model gives k - y
3
,1

3 
near the wall.

The comparison of the three tested two-equation models to equilibrium and non equilibrium boundary
layers with and without pressure gradient indicates a superiority of the k-w model. It is also interesting
to notice -that no wall functions are required.

5.3.4. Compressibility terms

In general, the authors who tried to include compressibility effects in a two-equation model ob-
served that any additional term in the kinetic energy equation requires a modification in the second equa-
tion (the c-equation, let us say). The additional terms in the two equations have a similar form but the
characteristic-time is different. This is in accordance with the idea that a modification in the production
of turbulent-kinetic energy also affects the dissipation rate-after a time of the order of k/c. Then, in
the C-equation, a term is Included which is proportional to the -term added in the k-equation ; the coeffi-
cient of proportionality is of order c/k (GALMES et al. 1983).

GALMES at al, 1983, modified the JONES-LAUNDER model to include compressibility terms in the cal-
culation of two-dimensional boundary layers. In the k-equation, the additional terms are

- <pU'2> L - <PV 2
> I- ap

First it is assumed that the normal stress are proportional to the kinetic energy

<pu'
2
> - pk ; <pv'

2
> -O.4pk

It is also assumed that the strong REYNOLDS analogy is valid (this is acceptable for boundary
layers not too far fz.n equilibrium on adiabatic walls). Then the velocity density correlation is

<'u' I( ) M p ) 2 u2>

p pU

where Rpu is the velocity density correlation coefficient. Let us notice that this-formula is not galilean
invariant.

Finally, inviscid fluid -approximations are used to simplify the numerical procedure

divU M2 a

p1 -PpU ax a x

The-compressibility terms become

aU aV <pu'> ap kU bP . C

with 

Y

oe b, - 0.4 + R, (Y - 1) ; C , - 0.6

The correlation coefficient R.. has been taken -as -Ru 0.8.

In the c-equation, GALES-et al add to the-right hand side terms similar to those expressed by
eq.87. The additional term in the c-equation is

, (b, C) (88b)
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The value taken for Cc3 is Cc 3 3.

Most of the calculations performed by CALMES et al adopt a standard expression for - <pulv'>

k2 0U
<puv> - C, fu p- C, - 0.09

fit - exp [ "R,(0
GALMES et al also mentioned that the eddy viscosity could have to be modified. They suggest the

following expression :

pk2  
(89)

C" c(I - A.T./c)

where A.T. represents the additional terms in the k-equation.

Eq. 89 is based on the balance between production and dissipation terms in the k-equation but the
additional hypothesis which is introduced namely in the ratio - <u'v'>/k-is unaffected and is not certain.

DUSSAUGE-QUINE, 1988, proposed a model for the pressure-velocity correlation in-which they include
some compressibility effects (this model will be discussed in section5.4.). They do not add compressibili-
ty terms in the k- and C-equations, but use a modified eddy viscosity which is obtained by simplifying-the

REYNOLDS stress equations. The result is

;p~l ' 2 ICI.. O.09 (90)
(1-12 k(2) Ml)

Nwhere M is the local MACH number and 13 is

13 CA = 1.5 ; k(2) = 1.5 , .' 1.4
(C1 - 1) + P/C C

where P Is- the production term in the k-equation.

c: is a model constant. Various values have been tested (- 1.35 : cc : - 0.8).

DUSSAUGE-QUINE applied this model to the calculation of a supersonic free shear layer. The results
are encouraging-as this model predicts a decrease in the spreading rate of the shear layer when the MACH
number increases, whereas the standard k-E model indicates practically no influence of MACH number.

To end -this section on compressibility terms, let us mention the work of HORSTMAN, 1987, who per-
formed calculations using a JONES-LAUNDER model modified by the inclusion of compressibility terms. Three
modifications have been tested :

MOD A : in the right hand side of the c-equation, the term - C 2 PIE is replaced by - C

with C - 4.5.

MOD B : the-compressibility terms in the k-equation are modelled using the following relationships

<U p';> - k2

p -X n -I UU,

u, I pkM
2 
aU

with n = 1.2-; ,C I -0 ; C X2 ' 0.12.

Additional terms are also -included In the c-equation. They have the same form as those added in
the k-equation but they are multiplied-by C. i with C. 0.3.

MOD C : using-the identity
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! < pui u;, <u;u;> <Plu;u;, ,Plu;,,o'u;,--- 3.3"

~P
it is argued that the model gives the quantity - p<uu)> Neglecting the triple correlations and making as-
sumptions like those used in eq. 79-81, the eddy viscosity coefficient is multiplied by

-;C=l

I - a---C-

5.4. REYNOLDS stress transport equation models

As for the lower order models, the most straightforward method to obtain a model with transport

equations for the various components of the REYNOLDS stress tensor is to use the incompressible model in
which the local averaged density is placed where necessary. The basis of the equations has been given in
paragraph 2.3..

The compressibility appears explicitely only in the term

<P'u;> ap <p'u;> ap
PCIJ ' P x) p ax, (91)

The velocity density correlation can be modelled as given in paragraph 5.3. (eq. 79-82).

5.4.1. "Incompressible" model for the pressure-strain term

Compressibility can also affect other terms. Let us examine the pressure-strain correlation

fai u au,
W - a-> An incompressible modelling of this term implies that <p' -X> - 0 ; this means that the

velocity fluctuations behave like an incompressible field. If this hypothesis is retained, the pressure-
velocity correlation can be expressed as (VANDROMME-RA MINII, 1987)

~ax~ ax fJ + P,I11.2 (92)\C

., - e pu;u; - .pk)

C2 
+ 8 2 8c- 2 C 2 - 2 2 2 au

11 PI- 6
11 PP) -0 jj 3 ) p -2.---Pk (2Si 5 - J a,)

IPj <piuu>L)+< u>U

au.

(P<puu.> au

PQIJ pu~u_> _ + <pu~u >6U
(< axi

1 (OU aU)

This modelling is valid at high REYNOLDS number. Near the wall, the model has been completed by

GIBSON-LAUNDER, 1978, to take into acccunt the effects of wall reflexion term which appears when the POISSON
equation for the pressure is solved. A term o, is added to pP,'4, + 0,, 1 , in eq. 92

pk3/ 2  3 3
2 ~ .5cx- n~. 2 2 ~nn -k) ~k fn 1)

S<puu
gao Cp - + C2 41.p,z 2 C, 0.5 ; C2 , "0.3

In these formulae, x. is-the distance normal to the wall and x, are the components of a unit vec-
tor normal to the wall.

!I
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5.4.2. Models for tht pressure-strain terms with compressibility effects

STRANLE, 1988, starts with the-POISSON equation For the pressure and tries to Follow the-same rea-
soning as in an incompressible Flow, but he was led to introduce several approximations - for example, it
is assumed that the density fluctuations are small (pl/p << 1). However certain of these approximations are
not consistently applied all along the development. The Final result is :

(C2  + 8) , (3 C - 2) ( aPU1  pU. ( C2  - 2) 2 ."--11 1- -~.6~ Q - P I (3
,55 k , ax 11 'j 3 (93

- i (puui> 2

P; [<uju'e> L~ <u;u > Pul)

- apUj
P - <u'uI> a

pu, apu'
;* - (<u;u> - UT u; Ue> )

It should be noticed that this model introduces additional unknowns which are the terms <u u;>. In
addition, this formulation has not yet been tested in a calculation method.

J.P. BONNET, 1981, also tried to include compressibility terms in the modelling of the pressure-
velocity correlation term. He argued that the pressure equation in a steady compressible two-dimensional
thin shear flows suggests that. compressibility affects mainly the return-to-isotropy term (V* ,) through
the following contribution ,

[lP 3 2(au ) (a2 p'u) ~ a u u dvol (44., ) N J1-I <ra , 37X I >-' (94)

with BA . r.

Then, aqsuminf.that the pressure fluctuations are small (p'/p << p'/p), the-density fluctuations
are such that - - .-. The strong REYNOLDS analogy is also used (negligible total temperature gradient

T
and fluctuations), so that - = (y - 1) K2 -' With these two assumptions, the return-to-isotropy term
becomes :

S.i' j * - c(. C ,(.I - 1) K2) E (<puu ;> - pk) (95)A 3.

where A is a turbulence length associated with the modelling developed by DONALDSON.

BONNET-proposed an alternative Form to eq. 95

+ 
'
Jc -C 1 (1 - CA pa j / (<Pu~u;> - T.61 jpk) (96)

where a is the sound-celerity.

This model was applied-to the calculation of the free shear layer. With CA - I or C, * 8, the mo-
del gives a rapid decrease in the spreading rate of the shear layer as the MACH number increases in agree-

Sment with the experimental results.

DUSSAUCE-QUINE, 198R, also consider the compressibility effects on the pressure-strain terms. They
describe the pressure equation in the case of an incompressible- fluctuating field with non constant density
as:

----------- -- i
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2p_, au au a0u; au; a, (au; au; a11
2 - up + higher order terms (97)

The terms involving the density fluctuations are modelled by analogy with the classical return-
to-isotropy ROMlA model.

In a thin shear flow with a preferred direction, the contribution to the pressure-velocity corre-

lation P,,, is an additional term rIp. the form of which is

'T J. P , U i T, j (98a)

where T, is a function of the arguments <p'u;>, <plu;u;> ... Only the argument of lowest order <p'u,> is
retained. Arguing the incompressibility of the velocity fluctuations, the condition it,., a 0 is used. Then,

the expression of TJ is:

T, . s<P -> (<pu;> + <plu;> &J,)] (98b)

The density-velocity correlations are obtained- from

<P'";> =()( -) <u;u;>
k(i) (Y- 1) M2 - (98c)

with k(l) - 0.8 ; k(2) - 1.5.

Relationships (98a-b-c)-are-used in an algebraic stress model as proposed by RODI. The reault is

<u;u;> '<U.>l
k . "-" -jo KI) (99)

k k

where the index 0 represents the model without compressibility effects. Then K,, is a correction function

given by

K1 1 --213k(l)W2

22 l  3k(l)Mi <U;U;>

1 - 24k(1)M2  
<u u;>)o

1

1- 1 0k(2)M2

with: cc (' -
13 C, . 1.5

(C1 - 1) + P/ C

where P is the production-per unit mass of- turbulent kinetic energy.

This model has been used with the k-c equations. The shear stress is

- <uu;> C" -2 LU (100)

with : C" , CPO(x, 2 )
2 

; C0,o 0.09.

A value a between - 1.35 and - 0.8 gives-satisfactory predictions of the behaviour-of the sbperso-
nic free shear layer.

5.4-.3. REYNOIDS stress equation model

Let us examine the modelling of the other terms of the REYNOLDS stress equation

, - .• p P pD 0 pC + a (P1.) (101)
ot a '3
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Neglecting the pressure-velocity correlation <plu >, the turbulent diffusion term is obtained from
the modelling of the triple velocity correlation

<PU'~ua (<Pu'u;>
- <Pu(u~u> . O <puu'> - (102a)

At high REYNOLDS number, the viscous diffusion term is neglected but near a wall, this term must
be retained. To obtain a simple expression, many hypotheses are needed : the correlations between viscosity
fluctuation and fluctuations of velocity or density are negligible, the velocity fluctuations are
incompressible, ... Then the viscous part of pJ,1 , is approximated by

((P 1uu> (102b)
ax -Pu>

The compressibility term pC,, involves the modelling of the term <pu;>. One of the expressions gi-
ven in paragraph 5.2. (eq. 79-82) can be used.

Finally the destruction term pD1 , is assumed to be isotropic at high REYNOLDS number. This means
that

pD1  2 * p 6j £ (102c)

To take into account the non isotropy of pDj at low REYNOLDS number, the following expression can
be used (DALY-HARLOW, DONALDSON) :

pDIJ -(<pu;u;> fs * (1 - fs) &,jpk)

1 kk
with fs • I tl - ;

Rt 
. k"

I + Rt/lO L'S

Very often the REYNOLDS stress transport equations are not used as such. They are simplified In
order to obtain the algebraic stress models. Symbolically the REYNOLDS stress equations have the form

P Dt . + ('4 (103)
Dt I 'r a

where SI, represents the source and sink terms of the T, J-equation. SIj are functions of T13J

A possible way to derive an algebraic stress model is to use the hypothesis proposed by RODI,
1972

Dt a"x, (Pjijk) - L- _ _" (0 - (104)DT ~ k I 1  Dk ax P J..a

or, using eq. 103

T11 S*

Stj . k 2. (105)

Equations (105) form a set which can be solved to express the stresses T,, as a function of the
velocity gradient, k and c. This means that the-turbulence model involves only the solution-of two partial
differential equations (k-c for example) and a set of algebraic- equations.

5.5. Turbulent heat flux equations

Very few models have been proposed for the closure of the turbulent heat flux transport equations
at least for compressible flows as they are considered here. If the heat is taken as a passive contaminant,
models are available (LAUNDER, 1976. EL GOBASHI-LAUNDER, 1983, NEWMAN et al, 1981, JONES-MUSONGE, 1988).
This -s-obviously a first approach of the problem which can give very useful information. It is also inte-
resting to consider models devoted to calculate mixtures of gases of different-density ; when these models
involve transport equations for the flux of concentration (CHASSAING-HERARD, 1987, JONES-PASCAU, 1988), a
few results can be useful for the modelling of turbulknt heat flux transport equations.
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5.5.1. FINSON-WU model

Among the very few attempts towards including turbulent heat flux equations in a calculation method,

the work by FINSON-WU, 1979, can be cited. Their model involves transport equations for the REYNOLDS stress

components. This model has been applied with the boundary layer approximation and the fluctuations of den-
sity are neglected. FINSON-WU proposed the following equations for <h'

2
>, <v'h'> and <u'h>

D < h ' 2>D 6 h ( a -P k < v 2 > a < h1 '2>y a < h 2 > .)
2p (v'h'> - C, p <h'

2
> 0.4 a k

57 ay k ay y 5 1 ayD <v h '> < . > h a 'YU a' ( k <v '2> a y' a ~y ,p p <v - - 0.09835 p <u h'> - C 2 p <v'h > 0.8 - p - <v'h > . <v h >

- h a L • v- a-L--'p L <ulh> • - 0.3989 P <v'h> - - p <u'v'> - p ulh) 0.4 - p - a uhl> + L
Dt ay ay C2 Pk ay L C ay 51 ay

with :

0.8 + 7.5 1r/RA 1.165 + 12.5 I/A 'WA

1 + 1
2.5 iT/RA ;S 

1
+
12 5  

RA

The length scale A is related to the dissipation rate e by

k
3
/
2

c 0.4 --- (1 + 12.5 i/RA)

5.5.2. JONES-MUSONGE model (incompressible flow)

In incompressible flow, several models have been proposed- for calculating a scalar field with sca-

lar flux equations. The scalar Is often the temperature and it is probably possible to extend these models

to compressible flows.

One of these models has been given by JONES-MUSONGE. The equations are

D <u;> P 3 +-A, +.. - J, (<u;u;>)

F t 3 ~ ax,

De c 1 +c aK u7 (C'  C - C ) e C J(0)

D

B- <U, >• pl? 2, + C. L J, (<Up2>)

D~ a_ a1
<92 RP- C, + C. Y Cj J<(92)

B__ 01 CD - D- <UI1P'> TX - C

with

k . af
J,(f) - <u ju> -

P13  - <u'u > au- <u;u> au

aue <uT>aut

Q, .= P - <u U b

- <;u;> u

p - - 2 <u' > ax3

<U;U;> 6
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A 2 2 2CbP C P1  + Ck -
+ C5 <ULU;' " C6Q 1 +C7 k61 j

aUi auj
B- --Cs S <u p'>+ 2 bijk 2 C ;V') L Ch <U;9Ul>

k O xi 3 ax U

C;, . - / (1 + c, r, b,<

The model constants are

C. = 0.22 C1  1.5 C2 = - 0.53 C3 - 0.67 C, - 0.12

C, . 0.18 C, -1.4 C2 .1.9

= C~t  3 C'P2 - 0.12 C9P3 - 1.09 , = 0.51

C, - 2 C5  . 1.8 C2  . 1.7 C,4 . 1.4

It should be noted that the pressure correlation terms (pressure-strain and pressure-scalar) have
not been modelled as in the LAUNDER-REECE-RODI model. These terms are not decomposed into a rapid part and
a return-to-isotropy part, but are globally considered. In particular, the exact result obtained when an
Isotropic turbulent field is suddenly submitted to a mean strain field is not verified. As a counterpart,
it seems that better agreement is obtained for homogeneous sheared flows even in the case of strong shear.

6 - EXAMPLES OF APPLICATIONS

6.1. Flat plate boundary layers

An integral method has been used (COUSTEIX et a). 1974) to determine the-effects of MACH number
and-wall temperature on the skin friction of the flat plate boundary layer. The integral method is based on

the solution of the global equations of continuity, momentum and energyv. The closure relationships are ob-
tained from self-similarity solutions calculated with a mixing length scheme.

Figures 12 and 13 show the-comparisons of numerical results with the VAN DRIEST II results. These
latter results are in good agreement with the experimental data and are recommended as references at the
1980-81 STANFORD Conference. The integral method gives right trends in the range of parameters investigated
(M. < 5 ; 0.2 < T,, /T. 4 < 1.).

CEBECI-SMITH also presented comparisons of experimental skin friction coefficients for adiabatic
flat plate boundary layers by using results obtained with their method. In the range 0.4 < M. < 5,
1 600 < R8 <-702 000, figure 14 shows that the calculations reproduce the experiments very well.

Another application of the-integral method proposed by COUSTEIX et al is shown on figure 15. In
the experiments-performed by HASTINGS-SAWYER, the MACH number is nearly constant (M, - 4) and- the wall is
adiabatic. Good results are obtained on boundary layer thickness and skin friction.

The following application concerns a flat plate boundary layer with heat transfer (COLEMAN et al).
The calculations have been first performed in turbulent flow with a mixing length scheme given by eq. 67
(figure 16). It seems that the quality of -results is poor as the MACH number increases. Calculations have
also been performed by ARNAL by taking into account transition effects. In the transition region, the shear
stress is calculated by :

at'

The eddy viscosity is given by a mixing length scheme. In Incompressible flow, the intermittency
function is prescribed according to figure 17 (0 Is the momentum thickness calculated at the current point
and 0, is the value determined at the transition point). In compressible flow, the intermittency fucntion

is expressedrby the same function-but 0- - I is replaced by - + 0.02 M2) to take into account

the lengthening of the transition region at high-speeds. In the application shown on figure 18, the transi-
tion point is prescribed -according to the experiments. Qualitatively, -well behaved computational results are
obtained but the level of heat fluxes is slightly overestimated in the turbulent region.

6.1. Boundary layer with pressure gradient

In the experiments of CLUTIER-KAUPS, the-boundary layer is studied along a body of revolution with
different conditions of velocity, pressure gradient and wall temperature. In the example presented, the MACH
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number is around 2.5. the pressure gradient is slightly negative and the ratio T,/Tad is around 0.6.

The calculations have been performed using three methods : the integral method proposed by COUSTEIX
et al, a mixing length scheme (eq. 67) and the k-c JONES-LAUNDER model. This case does not pose special dif-
ficulties and-all the methods are in good agreement with experiments.

In the experiments of LEWIS at al. 1972. the boundary layer is studied along the inner wall of a
cylinder and a centerbody placed along the axis generates the pressure gradient. The wall is adiabatic. The
calculations shown in figure 20-have been performed by CFRECI. The calculated results -reproduce the- effects
of adverse and favorable pressure gradient very well.

6.3. Boundary layer with variable wall temperature

Extensive studies of boundary layers with pressure gradient, heat fluxes and blowing and suction
have been performed by MORETTI-YAYS, MOPFAT-KAYS. The case presented in figure 21 deals with a negative
pressure gradient and a variable-wall temperature. The calculations by CEBECI-SMITH follow the experimental
data remarkably well.

6.4. Effects of wall blowing

BUSHNELL et al, 1975, analysed the effects of wall blowing on the skin- friction coefficient of flat
plate boundary layers. They studied the ratio Ct/Cto Of the skin friction with and without-blowing at the

Pv~
same value of the REYNOLDS number Re. as.a function of the blowing parameter 2F/Ct0 (P . - ). It is found

that the MACH number has a small effect on this curve (figure 22). Calculations weje -performed- using a mix-
ing length scheme in- which the outer level of the mixing length is function of 6' to take-into account low
REYNOLDS effects Just downstream a transition region (figure 7a). In the range M. < 6.6. the calculations
are in good agreement- with experiments (figure 22). Calculations- by -RUBESIN and SQUIRE with a conventional
mean field closure also showed that there is a small influence-of MACH number. REYNOLDS number and wall
temperature.

6.5. Calculations with heat flux transport equations

FINSON-WU used the model presented in paragraph 5.5.1. to calculate boundary layer on-rough wall.
To do this, they added roughness functions in the momentum equation, in the turbulent kinetic energy-equa-

tion and In the dissipation equation.

Figures 23 and 24 show the results of their calculation at low speed and comparisons with measure-
ments by HEALZER at al. The calculations reproduce the increase In the skin friction coefficient and in the
STANTON number (St = p,/Pu,(h,, - hj)). It is interesting to notice that the increase in the heat flux is
less than the increase in skin friction. This means that the REYNOLDS analogy is not preserved. This case
illustrates the interest in using-a model with hea flux transport equations.

FINSON-WU also applied their model to the data obtained during- the "Passive Nosetip Technology
(PANT) 'rogram" (JACKSON-BAKER). An example of comparisons is shown in figure 25 which gives the heat -trans-
fer coe^flcient on the nose of the body with and without roughness. At least qualitatively, the calculated
results indicate the right trend-of the experimental data.

Figure 26 shows the application of the model proposed by JONES-MUSONGE (paragraph 5.5.2.) to the
experimental data obtained by TAVOULARIS and CORRSIN in a nearly homogeneous shear flow with a linear tem-
perature gradient. The results represented in figure 26 are the turbulent PRANDTL number and the- ratio-of
heat fluxes. Here again, this-case illustrates the value of a model with heat flux transport equations.

JONES-MUSONGE applied their model with the same success to a thermal mixing layer downstream of a
turbulence grid and to a slightly heated plane Jet In stagnant surrounds.

6.6. Shock wave-boundary layer interactions

BENAv eazal, 1987, performed a critical study of various turbulence models applied to the calcula-
tion of shock wave-boundary layer interaction in transonic flow. This study has been performed by using the
boundary layer equations solved in the inverse-mode (the displacement thickness distribution is introduced
as a datum in this calculation method). The authors verified the validity of this approach by-comparison
with NAVIER-STOKES solutions. They tested -mixing length models (from MICHEL, ALDER and BALDWIN-LOMAX) and
models with transport equations (the JOHNSON-KING model which includes an equation for the maximum shear
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stress, the k-C JONES-LAUNDER model, the Algebraic Stress Model which is-obtained from the RODI proposal
applied to the HANJALIC-LAUNDER three equation model). In a general way, the authors concluded that the mo-
dels with-transport equations-behave better than the other models. The best results are obtained with the

Algebraic Stress Model (figures 27b-c-d). It is noticed that the mean velocity profiles are well calculated
with this model whereas the turbulence characteristics are not. However the- experiment reveals that the flow

is not strictly steady and the unsteadiness can interact with turbulence ; on the otherhand, the experimen-
tal data are not analysed by taking into account this unsteadiness. -

Another example is provided by calculations performed at NASA with NAVIER-STOKES equations (see
MARVIN-COAKLEY). The experimental configuration is depicted in figure 28a. The results obtained with three
models are compared with the experimental data : the CEBECI-SMITH model, the BALIOWIN-LOMAX and a q-u model

has been proposed by COAKLEY, 1283 (eq. 85) ; this model has-been modified to -take into account compressi-

bility corrections (the term - - C1 1) p t is replaced by - 2.4 C, Ipu in the expression of Hw) and finally
a heat transfer correction is-included (in-the eddy viscosity, the length scale becomes-t - min(2.4y. q/0)
in order to reduce the heat transfer in.the region of reattachment). The results are,given in figures 28b

and 28c -for two angles of the corner * 0 - 15" and 0 - 38'. A reasonable agreement is obtained with the
three models for 0 - 15' ; or the case 0 - 38, the results obtained with the CEBECI-SMITH model have not
been given because of the difficulties in computing the displacement thickness distribution. It should also

be noticed that the overshoot of the heat flux near the reattachment is not predicted by any model.

6.7. Calculation of the free shear layer

The free shear layer is a flow where the inadequacy of "incompressible" models.has been attributed
to compressibility terms. Indeed the models extended from the incompressible case without compressibility

effects predict practically no effect of the-MACH number on the rate of expansion of the free shear layer

whereas the experimental results indicate a decrease in the expansion as the MACH number increases. The re-
sults shown in figure 29 are-concerned with a shear layer with a zero velocity on one side and a non zero

velocity U. on-the other-side. The thickness 6 is defined as the distance between the points where the ve-
locity is T0J U. and 4607 U,. The computed -results -have been produced by BONNET for the 1980-81 STANFORD
Conference according to eq. 96. Improvements of the same quality have been obtained by VANDROMME and by

DUSSAUGE-QUINE (eq. 100). These compressibility corrections lead to improved results (as compared with ex-

perimental data) but it is not sure if the effects of MACH number are attributable to modifications of the

turbulence structure or to a problem of stability which modifies the large structures of the shear layer in

which case it is not justified to accuse the turbulence model.
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7 " CONCLUSIONS

The calculations of classical compressible turbulent boundary layers not too far from equilibrium

have often been approached with rather simple models extended in a straightforward-manner from the incom-

pressible case. For these cases, this approach is Justified even at MACH numbers as high as 10 except per-
haps for the calculation of wall heat flux where some uncertainty in still present. Indeed, in most of the
calculations, the-turbulent heat flux is evaluated by using a turbulent PRANDTL number which is assumed es-
sentially to be a constant. This hypothesis influences directly the calculation of the wall heat fluxes. In
many situations, the value of the PRANDTL number is not the value determined in a flat plate boundary layer.
Therefore, it is certainly valuable to try to develop transport equations for the turbulent heat fluxes.

This work is performed when the temperature can be considered as a passive scalar which is a first approach
to the more general problem of compressible flow. Useful information can be gained-from the studies of the
mixing of non reactive gases and from the study of homogeneous compressed turbulence (REYNOLDS, 1987).

The question of including compressibility corrections in the transport equations is not solved be-

cause these terms have been used for flows such as the free shear layer or shock wave-boundary layer inter-
action. It seems that the inclusion of such-terms-has often been beneficial but it is not clear if these

compressibility terms are completely justified or if they mask other problems. In the case of the shock
wave-boundary layer interaction, models are available which give reasonable agreement on pressure distribu-

tion for example, but none of them give the viscous parameters with the required accuracy.

A third important problem is the near wall treatment (which is not specific of the compressible

flows). In most of the applications, a simple model is used (for example a mixing length or a one-equation
model) but efforts are devoted to develop more general models valid -in the -fully turbulent region and in

the near wall region (LAUNDER-TSELEPIDALIS, 1988).

Indeed the near wall model is Very important because not only it Influences the prediction of the

skin friction for example, but also it has an important effect on the numerical behaviour of the model. The
numerical properties of the models are rather rarely studied, although they are of great practical

relevance ; indeed it Is not very useful to have a well physically funded model which leads to untractable
numerical difficulties.
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SHOCK-SHOCK BOUNDARY LAYER INTERACTIONS

by

Michael S.Holden
Calspan/UB Research Center

P.O. Box 400
Buffalo, New York 14225

United States

SUMMARY

A study is presented of the aerothermal characteristics of shock/shock

boundary layer interactions generated -by single and multiple shocks. A -review is

presented of experimental studies which have been conducted over the Mach number

range from Mach 2 to 19 in the continuous and short duration test facility. The results

of recent experimental studies in which detailed measurements of the distribution of

heat transfer and pressure were made for Types III and IV interactions in laminar flows

at Mach 6 and 19 are discussed in detail. In these studies measurements at Mach 6 to

19 indicated that the severity-of the interaction increased with transition and increasing

Mach number, as suggested from simple models. Some Type IV interactions where

maximum -heating occurs can also be unstable and, therefore, may be difficult to predict

with accuracy. The studies of multiple shock interaction demonstrated that the largest

heat loads are generated on the- cylinder if the shocks coalesce before they are incident

on the cylinder. While the flow fields and aerothermal loads generated by multiple

shock impingement provide test c(ases for code prediction, the peak heating loads are

significantly less than for a single shock of the same strength. Because of the low

Reynolds numbers at which transition occurs in the free shear layers developed from

either single or multiple shock/shock interactions, couple,' with- the occurrence of flow

instabilities for Type IV interactions, it will be difficult to accurately predict the

maximum heating in such flows over a large and important part of the flight regime.

However, the major feature- of the flow field and pressure distributions have been

predicted with good accuracy with finite difference and finite element schemes for the

solutions of the Navier-Stokes equations.

-- -- --- -



4-2

TABLE OF SYMBOLS TABLE OF SYMBOLS (cont.)

CH or St Stanton Number Length of shear layer

A - Constant used in peak heating correlation Rb L Body Radius

N - Constant used in peak heating correlation Rb - Bod RadiusRe - Reynolds Number
P - Pressure V - Characteristic velocity

U Velocity c - Chord length

q orr Heat Transfer (Btu/ft
2 ) -

H Enthalpy 7 - Specific heat ratio, Cp/l,

- Mach number T - To [i + (Tw/To)] /6
R Gas constant (1717.91 ft-lbslug R) c.

Cp Pressure coefficient d - Depth of substrate
T - Temperature (R)

- Thickness of blunt leading edge or nose
Y, y Normal distance measured away from surface k DNA( AI

u2
e

X, x Normal distance measured into surface k - N ose Z
C(t) Transient specific heat h - Heat transfer coefficient (Btul(hr*R°))

k(t) Transient heat conductivity P . Undisturbed stagnation pressure

r Non-dimensional time 0 Orbitor angle

Pr Prantl number
3 778.26 ft-lb/Btu SUBSCRIPTSmax - Peak value

- Density
o - Undisturbed value

I Viscosity - Wall values

CC - Reattachment angle R - Reattachment region

UR Width of reattachment region s - Shear layer
- Width of the shear layer

- Heat transfer rate- (Btu/(ft
2 sec)) STAG - StagnaneSREAL -Real value

r - Specific heat ratio IDEAL - Ideal value1- Time constant
Wave length - Reference value

A - Wave length LAM - Laminar value
- Non-dimensional distance aw - Adiabatic wall valuc

4 - Non-dimensional temperature
S - Radial frequency (2 7C f) or jet width - Ee stream

* Cross flow Reynolds umber - E od i

V O '1 "1 - Characteristic length- scale A - BodyA - At attachment line
0- Shsck generator angle d - Diameter
SSwept Angle i - Initial value

V . Kinematic viscosity LE - Leading edge

1. INTRODUCTION

The heating rates generated- on blunt bodies by a shock incident on the

bow shock in the stagnation region can be orders of magnitude greater than the

stagnation value in the absence of the interaction and, therefore, are of considerable

interest to designers of hypersonic vehicles. Initial studies by Edney(l) of flowfields

and large heating loads generated in shock/shock interaction regions -demonstrate that

for certain incident shock/bow shock -configurations, the pressure recovered on the body

can be orders of magnitude larger than the pitot -pressure, which, in turn, causes a

corresponding heat transfer rate increase in the stagnation region. Edney and, later,



others(2,3) showed that six different flow configurations can be generated depending

on the strength of the incident shock and its point of intersection with the bow shock.

Figure I shows the flow patterns defined by Edney in terms of Types I through VI

interactions, and the relative incident/bow shock configurations. Types I, 11, and V are

interactions where the shock propagates to the surface of the body, resulting in a

shock/boundary layer interaction. A Type VI interaction results in an expansion fan

boundary layer interaction which does not cause significant aerothermal load

enhancement. However, Types III and IV interactions result in large heating and pressure

loads and are of greatest interest to researchers.

A Type III interaction (shown in Figure 2) is defined as one generated

when the oblique shock is incident on the bow shock slightly below the stagnation

region, resulting in a shear layer with subsonic stagnation region flow on one side and

supersonic flow on the other. The heating rates generated in such L -flow are very

similar to the reattachment heating developed in reattaching shear layers and studied

extensively in laminar and -turbulent hypersonic flows by Holden(4). The levels of

heating developed at the reattachment point of the separated shear -layer are strongly

dependent on the laminar, transitional characteristics oftthe shear layer. The correlations

assembled by Birch and Keyes(5) demonstrate that such a -hear layer is highly unstable

and transition Reynolds numbers in the order of 104 can be anticipated, as shown in

Figure 4.

Isc

Type 7 Shock Expansion
m$ibnarnenS fan

M. Jet \Tvos .I]Espsnlon

M iswavs ImpIng1menl

Type 1' supefsonic ow shocklot Impolnnemont A (11s)

moo sf S_ M,

I M<1Leading

Oblique Impinging shock (iSt

M! s

UeO5s/het I>

loer stla hmen ,$/ Ttflnlnsllll
MWp h i U, / shock ITS1-

type ]h Imnoe M

Figure 1 SIX TYPES OF SHOCK WAVE INTERFERENCE PATTERNS
(Keyes and Hains)
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CYLINDER
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Chapmdn, D.R., Kuenn, D.M., and Larson, H.K., "Investigation of Separated Flows in Supersonic and
Subsonic Streams with Emphasis on the-Effects of Transition," Rept. 1356, 1958; NACA.

When the oblique shock is incident close to the normal region of the bow

shock, the flow is processed by a series of shocks and expansions (shown in Figure 4)

which create a narrow supersonic jet. This jet, which is bounded on either side by

shear layers, is terminated by a normal shock just ahead of the surface, forming a

narrow stagnation region. The relatively efficient compression in the Type IV interaction,

coupled with the large local velocity gradients in this small stagnation region, are

responsible for the large local heating rates generated in this type cf interaction. The

pressure recovery (relative to the pitot pressure) increases wit.h increasing Mach number,
and so the interference heating (relative to stagnation point heating) can be expected

to increase in severity with increasing Mach number. Also, Edney suggests that if

significant dissociation occurs, lowering the effective specific heat ratio will result in

a compression -process that has higher pressure, and- correspondingly higher heat transfer

rates. This prediction, based on a highly simplified (constant) model, has yet to be

verified for high-temperature, non-equilibrium flows.

$
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In the first segment of this report a review has been presented of the

aerothermal characteristics of shock-shock boundary layer interactions generated by

single and multiple shock. Experimental studies have been conducted over the Mach

number range from 2 to 19 in the continuous and short duration test facilities. The

severity of the heating loads requires the use of insulated models and short test times

to -prevent distortion from lateral heat conduction. The results of recent experimental

studies in which detailed measurements of the distribution of heat transfer and pressure
were made for Types Ill and IV interactions in laminar flows at Mach 6 to 19 are then

presented and the results discussed in detail.

2. REVIEW OF EARLIER STUDIES

The studies of- the aerothermal loads generated by shock/shock boundary

layer interaction or "interference heating" began shortly after the advent of supersonic

flight and construction of supersonic wind tunnels. Most of the earlier studies were
concerned with the pressure loads generated by shock/shock interaction. However the

thermal failure of the pylon supporting a dummy ramjet engine in X-15 flights tests,
as well as in a sled test conducted by Air Force(6,7) provide a graphic demonstration

(Figures 5, 6) of the- searing heating loads that can be generated in these regions.
While one of the most definitive studies of shock/shock interaction resulted from an

investigation of "anomolous heating rates" by Edney (1), the major studies of interference
heating have been formulated to investigate the aerothermal loads (i) from the shock

incident on a -fin, wing or pylon (ii) the nosetip/body shock interaction on indented

nosetips and spiked bodies, and (iii) the impingement of shocks onto inlet cowl lips and

injector struts. A chronological summary of various investigations is -given in Table 1.

Investigations of "shock impingement" heating began in the early 60's with
studies of the oblique shock incident on swept and unswept fins. These early studies
were motivated by observations of unusually high heating rates generated during the

flow visualization studies of various uninstrumented supersonic aircraft configurations

at NASA Langley. The first definitive investigation of shock interaction heating were

wind tunnel and free-flight studies conducted in supersonic flows up to Mach 5.5 to

measure the heating in regions of shock impingement on unswept cylinders by

Newlander(8) and Carter and Car(9). A typical model configuration of Newlander's

investigation along with the associated heating rates is shown in Figure 7. Similar

material is shown in Figure 8 for the free flight investigation of Carter and Carr.
These studies revealed the heating enhancements were 5 to 10 times higher than the

reference stagnation heating value when a shock/shock interaction occured.

Measurements on similar configurations were conducted in -hypersonic flows by
Francis(10). At NASA Langley, Beckwith(lI) and Bushnell(12,13) measured the
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interference heating on a swept cylinder close to its junction with a wedge, while

Jones(14) studied a fin-plate interference at Mach 6. Bushnell's earlier work (12)
focused on the interfering heating problem caused by the root region of wedge-swept

cylinder configuration and initially the analysis of localized effects of shock/shock

interactions was not pursued. However, in a subsequent study, Bushnell(13), conducted
studies in which he isolated both effects of shock/shock interactions and effects of

Figure Sa SLED ON TEST TRACK AT HOLLOMAN AFB IN MOTION AT 7000 fps

Figure 5b SLED ON TEST TRACK AT HOLLOMAN AFB RESULTING INTERACTION
HEATING DAMAGE

j _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Figure 7 SHOCK IMPINGEMENT HEATING ON A RIGHT CIRCULAR CYLINDER AT A
MACH NUMBER OF 2.65 TO 4.44. INVESTIGATION OF NEWLANDER
(REF. 8)
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separated root region. By supporting the cylinder away from the shock generator, he

removed the separated region at the wedge/cylinder junction. The effects of leading

edge transitions were also investigated (Figure 9(a)). A typical-result of peak heating

expectations based on Bushnell's work, and others, and their typical model- configuration

is given in Figure 9(b).

Also during the mid-sixties studies were being conducted for AFFDL in

the AEDC facilities by Siler et al(15), Gulbran et al(16) and (17), Knox(18) Ray and

Palko(19) and Uselton(25). Again, the emphasis in this work was on leading edge shock

impingement and was a direct result of AFFDL's experience with high heat loading

observed during their supersonic aircraft testing programs. Siler's investigation of

leading edge surface heat transfer yielded heating enhancements of 5 times the values

without shock impingement. The high heat rates caused by the shock/shock interaction

are illustrated in Figure- 10. This test was conducted in AEDC's tunnel F, using nitrogen

as the test gas at Mach 19. The investigation(s) of Ray and Palko were conducted in

AEDC Tunnels B and C, again with a wedge/cylinder model configuration. These studies

were conducted in air at Mach 6 to 10. The peak heat transfer rates observed here

were from 3 to 4 times the undisturbed rate.

At NASA Ames, Heirs and Loubsky (20)-also studied the effects of shock

impingement on the heat transfer to a cylindrical leading edge in the Ames 6 foot

Shock Tunnel at Mach 5 to 14. This latter study -highlighted a number of problems

associated with the measurement of the large transfer rates- and gradients generated

in the interaction regions. More specifically, in- the experiments of Heirs and Loubsky,

and in many of the other earlier studies, the conductivity of the model surfaces were

such that the peak heating and -the distribution of heating rates were significantly

reduced by heat conduction along the model surface. Although a correction procedure

can be used, it can be highly inaccurate, particularly if the actual heat transfer

distribution is as complex as it is in shock/shock interaction regions. Also the large

response time of the instrumentation used made it inpossible to resolve unsteady

movement in the interaction region. Even with these conduction losses, the measured

peak heat rates on an unswept cylinder impinged by externally generated shock wave

was measured to be 10 times that- of the undisturbed values. This study also concluded

that increasing the swept angle of the cylinder will alleviate the heat loading. At

larger swept angles, the heat transfer rates could be adequately analyzed by the

application of the two dimension boundary layer transformed to a swept cylinder

____________________
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configurations. A typical prediction of unswept configuration as compared with an

experimental result at Mach 14 is illustrated, in Figure 11.

In one of the most significant investigations of shock/shock interaction

phenomena, Edney(1) identified the basic flowfield structure in regions of shock/shock
interaction for a number of shock geometries, and suggested simple prediction methods

to estimate the aerothermal loads generated by them. The work of Edney provided

valuable insights to various types of inviscid and viscous interaction problems and will

be discussed further in detail. Following this major work, a series of studies were
initiated by NASA Langley to develop more accurate methods for predicting shock

interaction heating with application to the design of the Shuttle project. The work of
Hains and Keyes(2) and later Morris and Keyes(22) and Bushnell(12) and Bushnell and

Weinstein(45) extended the experimental work of Edney and provided some simple but

reasonably- accurate prediction techniques with which to estimate the aerodynamic loads,

as well as some- accurate peak heating rate measurements. The work of Hain and

Keyes, in particular, focused on various types of interactions which could possibly occur

on the surface of the shuttle/tank configurations. It -concluded that a Type IV interaction

could- occur on the shuttle/tank configuration, increazing the local heating rate up to

20 times -that -of undisturbed freestream heating rate. The test result, model

configuration, as well as a typical location of this type of interaction is illustrated in

Figure 12(a-b)(2). The computer program written by Morris and Keyes(21) provides

useful information in this regard. Measurements of the shock impingement heat loads

on the Shuttle were also made in a number of other studies with the models of the

orbitor (23) or the orbitor/tank (24,33) configuration.

During the mid-sixties to early seventies, the Air -Force, motivated by

their experiences with the X-aircraft testing program, supported work on shock

impingement on blunt fins-(25,26) and inlets (3), as well as (at the Von Karman Institute)

shock impingement on conical bodies and cylinders. The works of Kaufman(31,32) were

directed to the study of detail structure of separation and interaction regions of the

blunt fin mounted on a flatplate. The focus of these works was to study detailed flow

structure by various means- of flow visualization and to perform detailed pressure

measurements. Although the abnormal peak heat rates were observed, no -heat transfer

data was reported. The later works of Haslett and Kaufman focused more heavily on

the heat load measurements, but in a more complex geometrical configuration. The

tested configurations included various combinations of the orbital model with flat
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receiver plates as well as an orbital model with tank (receiver) model combination

(Figure 13). The first combination, along with surface mounted heat transfer gages,

was used to validate a typical empirical heat load amplification correlation function.

A typical comparison of the results are illustrated in Figure 14. The later configuration,

the combination of orbit/tank along with heat sensitive paint was used to. predict

residual heat loading on the shuttle fuel tank system during the separation stage. A

typical result is illustrated in Figure 14, where peak heating is showed to be as high as

30 times the undisturbed values. The work of Craig and Ortwerth was directed

specifically toward cowl lip heating, which currently is of major interest in the design

of NASP. Studies by Gulbran et al(16,17), and work by Ginoux and Matthews provided

further measurements and analysis.

The studies of cavity induced shear layer on a conical model along with

shear impingement caused by Types III and IV shock/shock interactions on a cylinder

were performed at von Karman -Institute (VKI) by Ginoux and Matthews(34,35). The

investigation of reattachment of cavity induced shear layer on a conical- model was

performed at Mach 5.3 in the VKI's continous supersonic wind tunnel. Figure 15

illustrates the analogy drawn by Edney(2) between Type III interaction and a cavity

flow. In a later work, Ginoux(35), studied the Types III and IV shock/shock interaction

produced on a wedge/cylinder configuration. Only small peak heat rates were observed

because of the low freestream Mach number (2.25), which was used in this investigation.

Typical geometrical configurations and -distributions of heat transfer are shown in

Figure 16.

The heating loads developed in regions of shear layer impingements were

measured in a number of studies of spiked bodies (Holden(36)), indented noseshapes

(Holden(37,38)) and Tension- Shells(39).- In these studies, the interaction regions were

generated by the interaction between the nose tip shock and body shock as illustrated

by Figures 17, 18, and 19. In most cases the basic mechanism for heating enhancement

is the reattachment- of a free shear layer, although therb are a number of cases where

a free jet is formed. Figures 18 and 19 show some of the typical heat transfer

distributions developed- along the body surfaces. The investigation of flowfield around

a tension shell by 3ones and Bushnell utilized phase changing paint to measure heat

transfer rate. The test gas of tetrafluoromethane was used in order to attempt to

evaluate the effects of 7 on the interaction.
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Figure 17 INTERFERENCE HEAT ON SPIKED BODY AT CALSPAN (Ref. 36)-
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Both investigations of spiked bodies and indented nose tips used high-

frequency thin-film instrumentation to measure heat transfer distribution. These studies

were part of a more extensive program to study the transient behaviors associated with

the aerodynamics of ballistic and maneuverable re-entry vehicles (MRVs). Again a
graphic illustration of the -damage caused by the heating in reattachment regions on

spiked bodies was provided-by sled tests conducted at Holloman. As shown in Figure 6
the shock from spike induced heating loads caused significant damage to the sled and

its runners.

Following the experiments and analysis of Keyes and Hains, Tannehill,
Hoist and Rakich(27) and later Tannehill, Hoist, Rakich and Keyes(28) performed a

number of numerical studies of shock/shock interaction induced by an oblique shock

impinging on the shock layer ahead of a circular cylinder. Solutions were obtained to

the time-dependent Navier Stokes equations for a number of cases with different shock

strengths for laminar flow at Mach 4.6 and 5.96. While substantial- grid refinement

was required to obtain meaningful solutions, the numerical solutions were in good

agreement with shock shape, and pressure and heat transfer distributions. Figure 20

illustrates a typical comparison of the numerical prediction to that of measurement by

Edney(l).

Following a period during which there was little new experimental or

theoretical research interest in the aerothermal loads generated in shock/shock

interactions, efforts were renewed to design airbreathing hypersonic vehicles. Large

aerothermal loads resulting from shock/shock interaction are generated on the control

surfaces, the cowl -lip-and on the injection struts of these vehicles.

Experimental studies by Holden et al(29) and Wieting and Holden(40)

provided detailed heat transfer and pressure distributions in regions of single and multiple

shock/shock interaction at Mach 6 to 19. A key feature of these later studies is that

very highly resolved measurements were made on surfaces with little lateral heat

conduction. Detailed numerical solutions were obtained for comparison with these

studies using finite difference and finite element techniques by Klopfer and Lee(41)

and Stewart et al(42). In the following section we review some of the features of

flow fields of single and multiple regions of shock/shock interaction and the aerothermal

loads that are developed in them.
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3. REVIEW OF FLOWFIELD STRUCTURE AND SIMPLE PREDICTION

TECHNIQUES

As discussed in the introduction, Edney(l) identified six types of shock

wave interference. Each type depends upon the orientations and strengths of the

interacting shock waves, the freestream Mach number, and the ratio of specific heats.

These interactions can induce increases in local heat transfer rates through the following

viscous/inviscid interaction mechanisms: (1) shock/boundary layer interaction, (2) free

shear-layer attachment, and (3) supersonic jet impingement. These flow mechanisms

are capable of producing large localized increases in heat transfer rate which can

exceed the undisturbed value by more than one order of magnitude. To successfully

design an air breathing hypersonic vehicle, it is important to develop prediction

techniques for defining the likely types of interference and the magnitude of the heat

transfer rates developed in the interactions. For each of the six types of interference,

simple methods to predict the interference patterns and calculate the heat transfer

rates have been developed. Here we review these techniques, which in most cases

have been embodied in various simple codes.

3.1- Type I Interference

A Type I interference occurs when both shock waves are weak, and the

flow behind each is supersonic. Such interactions would occur with the- attached shock

waves on wedges or cones, or for the case of a blunt body, if the interaction- occurred

below the sonic point. Typical Type I interference patterns are shown in Figure 21.

Since the flowfield associated with Type I interference is supersonic throughout, it can

be calculated in some detail.

Type I interference results in the formation of a shear layer which is

bounded by the transmitted bow and impinging shock waves. Across- the shear layer

the pressures must be equal and the flow velocities parallel. Interactive procedures

can be utilized to -obtain the strength of the transmitted shocks -and the orientation of

the shear layer relative to the freestream direction which satisfies these conditions.

From the strengths of the impinging and bow shocks, which are either

input or calculated from the Rankine-Hugoniot relations, it' is possible to determine

flow conditions in -regions- 2 and 3. To start the iterative procedure, a value of the



_77

4-31

zw

C),

crA

z0

or)



4-32

flow deflection is assumed, and conditions in regions 4 and 5 are computed, using the

Rankine-Hugoniot equations. If the pressures are equal, within a specified tolerance,

the calculation is terminated. If they are not equal, the shear layer deflection angle

is incremented toward the region with the lower pressure, and the procedure is repeated.
From the strength of the transmitted impinging shock and the orientation of the body
surface at the impingement point, it is possible to calculate conditions -in region 6,

once again utilizing the Rankine-Hugoniot equations. Two cases of regular and Mach

reflection must be considered. Regular reflection occurs for Mach numbers sufficiently

high and impingement angles sufficiently low to ensure an attached- shock system. The

latter case occurs if this condition is not satisfied and the pressure rise is then calculated
based upon normal shock relations.

The increase in heat transfer at the point of impingement of the transmitted

shock is, of course, the result of viscous-inviscid shock/boundary layer interaction. This

interaction is probably the best understood of all the viscous-inviscid interactions

possible. Several attempts have been made to develop computational techniques which

will predict both the pressure and heat transfer distributions through the interaction

region. The best known of the simple methods for laminar flows are based on the work

of Lees and Reeves(43), and Holden(44). Detailed solutions to the Navier Stokes

equations for laminar interaction regions has also been shown to provide a powerful

and accurate prediction technique when used with sufficient grid resolution (see
Appendix A).

Probably the most useful simple appriach is to employ empirical

correlations for laminar, transitional and turbulent shock/boundary layer interactions.

These correlations are based upon the inviscid pressure rise across the interaction

region, and are of the form:

--A

where CH is the Stanton number based on freestream- conditions and p is the pressure.

The subscripts MAX and o denote maximum and undisturbed values. A and N are

constants which depend upon whether the interaction is laminar, transitional or turbulent.

For planar shocks impinging on flat surfaces, Holden's(4) studies suggest N 0.5 for

laminar flows and N = 0.85 for turbulent flow.

_________________________________

I _ __ _ _
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To predict peak heating rates require a knowledge of the undisturbed

heating rates ahead of the interaction. The reference temperature method of Van

Driest is probably the most accurate for hypersonic flows.

3.2 Type II Interference

As the strength of the impinging or bow shock increases, a condition is
eventually reached where Type I interference is no longer possible, and the flow

-transitions to Type 11 interference. Typical Type II patterns are shown in Figure 22.
The existence of subsonic regions at present precludes a detailed analysis of the

interference. However, with the Type I analysis it is possible to predict when Type II

interference will occur. Schlieren photographs, from which the length scale is found,

together with Type I analysis can be used to estimate the peak heating rates in these

I lows.

3.3 Type III Interferences

Type I and I interference patterns involve the interaction of two weak

oblique shock waves. When one of the shocks- is strong, (i.e., followed by subsonic

flow) interference-patterns designated Types III and IV will occur. The type of interaction

generated depends upon the orientation of the flowfield at the impingement point.

Typical Type Ill-interference patterns-are shown in-Figure 23. As-in the case of Type I

interference, the interaction is characterized by the formation of a shear layer.

However, for the Type fIt interaction, one side of shear layer is bounded by a subsonic

region.

The procedure to predict the flowfield are the same for Type I and Type

111, except that the bow -shock strength is computed. The Rankine-Hugoniot relations

are used in going from region I -to region 2. Results from this-exact analysis may then
be used in an approximate analytic technique which calculates the shock stand-off

distance, shock shape, shear layer length and shear layer impingement point.

The peak heating in regions of Type III interference results from the

reattaching shear -layer. An analogous problem, that of separation induced by a-

compression ramp, has received considerable attention. Bushnell and Weinstein(45)-have

I-

-------
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proposed a correlation for separated boundary layer reattachment which has been adapted

to Type Ill interference. The correlation is of the form

/'W USA - 14 W S 1 N N

where A and N depend on whether the flow is laminar or turbulent; /ow and/w , are the

wall density and viscosity, respectively; u5 is the velocity behind the reattachment

shock; S-is the shear layer width at reattachment; and o is the reattachment angle.

Suggested values for A and N are (see Reference 45)

Interaction A N

Laminar .19 0.5

Turbulent .021 0.2

The wall density,/W, depends, through the equation of state, on the wall temperature

and the pressure in region 5, which is computed from the known approaching Mach

number and angle. For impingement on a two-dimensional body, the two-dimensional

Rankine-Hugoniot relations are used to compute the pressure; for three-dimensional

bodies, conical flow results are used. The same is true for the calculation of the

velocity a. . The shear layer width SLis computed from (45).

Interaction

Laminar SL 5.0U 4

Turbulent 5SL)Topa 1.6 tsL/j

where I SL is- the shear layer length, and is obtained from the approximate solution

discussed earlier.

This method appears to give reasonably accurate results for large

attachment angles, but has the disadvantage of predicting zero heat transfer for -grazing

incidence of the shear layer (i.e., = 0).
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3.4 Type IV Interference

Type IV interference can occur when the impinging shock intersects the
bow shock between the sonic line and the body axis. The resultant flow configuration
is shown in Figures 24 and 25. The impinging shock causes a displacement of the body
shock and the formation of a supersonic jet that is embedded in a subsonic region. A
jet shock is produced by the jet as it impinges on the body surface. Intense heating,
which can be many times that of the stagnation point region is generated by the

impinging jet.

The location of the jet bow shock within the jet will depend on the stand-
off distance of the shock configuration. This distance is obtained from experimental data.

The impingement region of the jet with the body surface -is shown in
Figure 25. The jet width and Mach number are obtained from the particular region, in
the jet, where the bow shock is assumed to occur. The bow shock is assumed -to be
a circular arc that intersects the jet boundary and sonic line at one point. The
inclination of the wall is such that- the impingement is not too far from normal.

The stagnation point heat transfer is computed from the heat transfer

relation for a blunt nosed body given by Kemp(46) is

~r ~ ~ . ~ ( r O ~ / W W ) O Y I ~ ) / 2 ( i 4 w ) (1 1 .2 0 )

where _ /

d~ SYC Rb L-t L ( -J M

This expression is used to obtain the heat transfer with and without shock interaction.
Using these expressions for the jet impingement flow Edney suggests the expression

o J_ = o '.

Where i b and 7 are the body radius and jet width respectively and subscripts R and DS-AC

are values at the peak stagnation point, respectively.
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3.5 Type V Interference

Types V and VI interference result when two weak shock waves of the

same family interact. This type of interference would be expected, for example, on

the leading edges of fins with moderate to high sweep.

A typical Type V interference pattern, which would occur for moderate

fin sweep, is shown in Figure 25. Note that in this case the interaction produces a

transmitted shock, a shear layer and a supersonic jet. Impingement of each of these

with the -body may lead to increased heating. Although quite important from a practical

standpoint, Type V interference is difficult to analyze because of the existence of a

subsonic region. However, it is possible to predict when Type V interference will occur.

From the schlieren photographs and pressure and heat transfer data it is possible to

devise correlation suitable for engineering calculations.

3.6 Type VI Interference

Type VI- interference, shown in Figure 26, occurs when the impinging shock

interacts with the bow shock associated with a highly swept fin. In this case, the flow

is supersonic throughout, and consequently, can be calculated in detail.

The prediction computational scheme is similar to that for Type 1, differing

only in that a Prandtl-Meyer expansion is used to get from region 4 to region 5.

Type VI i.terference provides a favorable pressure gradient for the boundary

layer, and thus does not lead to an increase in local heating. However, study of this

type of interference is important, since it provides a means for predicting the onset

of Type V interference, which does lead to significant increases in local heat transfer

rates. The Type VI program is capable, through the use of an interactive procedures,

to predict the occurrence of Type V interference for various values of freestream Mach

numer, specific heat ratio and strength of impinging shock. Figure 27 shows varying

interference pattern which occur when a cylinder upon which a shock is incident is

swept through a series of angles. The heating level generated in the interaction region

varies from those associated with the Type IV interference to the Type VI interference.
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4. EXPERIMENTAL PROGRAM

4.1 Program Objective and Design

The objectives of these recent studies was to provide detailed pressure

and heat transfer measurements as well as Schlieren photographs to define the structure

and properties of regions of shock/shock interaction at Mach iumbers from 6 to 19.

The emphasis in these studies was placed on the study of Type III and IV interactions,

for these provided the largest aerothermal loads. Studies were performed-over a range

of Reynolds numbers to explore the effects of transition on the heating rates.

Measurements were performed for fully laminar conditions to provide a data set which

could be compared with theory without transition or turbulence modeling problems.

The first group of studies was designed to explore the aerothermal

characteristics of the interaction between a planar shock and the shock layer ahead of

a circular cylinder supported perpendicular to the flow. The objectives of this stidy

were to investigate the effects of Mach number on the magnitude and distribution of

heating in the interactinn region on the cylinder for a numbr of different types of

interactions. The Mach number range from 6 to -19 was selected, and the emphasis

was placed on an examination of Type III and IV interactions because of the large

aerotherinal loads associated with these configurations. The other major factor which

controls the peak heating levels in regions of shock/shock interaction is the condition

of the shear layer (laminar/turbulentl generated by Type IlI'interaction and surrounding

the jet for the Type IV interaction. The Reynolds number in the shock layer adjacent

to the shear layer is believed to be the most important parameter controlling transition

of the shear layer, which-is in turn controlled-by the Mach number and Reynolds number

of the free stream. Measurements were made at Mach 6, 8 and 16 for Reynolds

number large enough for turbulent shear layers to be generated. The majority of the

studies at Mach numbers from I I -to 19 were conducted for Reynolds numbers where

the shear layers were fully laminar.

The second series of studies was conducted to examine the effects of

sweeping the interaction region on the peak heating generated in the interaction reion.

In addition to problems in obtaining two-dimensional flows over the models, quc3.lons

associated with transition of the boundary layer on the swept cylinder in the absence

of the shock/shock interaction is an important issue. The tests that were conducted
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in this series were a preliminary set designed principally to aid in the formulation of

a subsequent, more extensive, investigation.

The third and final series of studies was designed to investigate the

aerothermal loads associated with the impingement of two oblique shocks in the

stagnation region-of a transverse cylinder. The objective of this set of studies was to

determine whether the heating levels generated by the impingement of two oblique

shocks- incident on bow shock would generate heating loads significantly less than a

single shock of the same overall strength. This investigation stemmed from questions

associated with the impingement of multiple shocks from the compression ramp of

ramjet inlets on the cowl lip. In these experiments, the effects of the relative strengths

of the two xl,.-Ient shocks and their positions relative to the bow shock were investigated.

In particul. , -- ,mpts were made to determine whether the heating loads would be

substantially r, Iur-d by preventing the two ramp shocks from coalescing before they

are incident on the bow shock. Measurements were made to determine the relative

magnitude of the heating loads developed for a single impinging shock and a pair of

focused shocks with the same overall turning angle.

There are a -number of key problems that must be solved -before a

meaningful experimental study of shock/shock interaction at hypersonic speeds can be

conducted. First is to obtain a blockage-free -flow between the shock generator and

the cylinder while at the same time preventing expansion at the trailing edge of the

shock generator influencing the shock/shock interaction. Also, to accurately- define the

characteristics- of the interaction regions, consistent with the 0.010-inch- gage spacing

attainable with our thin-fi!m instrumentation, a 3-inch cylinder is required. These

constraints require typical shock generator lengths of 4 feet, with 18 inch-model widths

to- attain two-dimensional flow over the center of the models. Large experimental

facilities are required for such experimental studies. We designed models with shock

generator angles between 10 and 15 degrees based on Edney's prediction- technique, to

give the maximum interference heating enhancement. In the multiple shock interaction

investigation, two shock generator angles were selected so that the total turning angle

was always between 10 and 15 degrees.
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4.2 Experimental Facilitiesi Models, Instrumentation and Data Reduction

4.2.1 Experimental Facilities

The experimental studies were conducted in the Calspan 48-inch and 96-

inch Shock Tunnels at Mach numbers of 6.5, 8, 11.7, 15.6, and 18.9. The facilities and

their performance are described in Reference 50. The free stream conditions at which

the current experimental program was conducted are plotted on the Mach number versus

unit Reynolds number map shown in Figure 28(a). At Mach numbers of 6 and 8 the-

Reynolds numbers were sufficiently large that the interactions were turbulent. At Mach

11, 15 and 18 the flows were completely laminar with the exception of one condition

at Mach 15 where we believe the Type III and IV interactions were turbulent.

The operation -of the shock tunnel in the reflected shock mode is shown

with the aid of -the diagram shown in Figure 28(b). The tunnel is started by rupturing

a double diaphragm that permits high-pressure helium in the driver section to expand

into the driven section. This generates a normal shock which propagates through the

low pressure air. A region of high-temperature, high-pressure air is produced between

this normal shock front and-the gas interface (often referred to as the contact surface)

between the driver and driven gas. When the primary or incident shock strikes the end-

of the driven section, it is reflected, leaving a region of almost stationary, high-

pressure, -heated air. This air is then expanded through a nozzle to the desired free

stream conditions in the test section.

The duration of the flow in the test-section is controlled by-the interactions

between the reflected shock, the interface, and -the leading expansion wave generated

by the nonstationary expansion process occurring in the driver section. We normally

control the initial conditions of the gases in the driver and driven sections so that the

gas interface becomes transparent to the reflected shock interaction. This is known

as operating under "tailored-interface" conditions. Under these conditions, the test

time is controlled-by the time taken for the driver/driven interface to reach the throat,

or the leading expansion- wave to deplete the reservoir of pressure behind the reflected

-shock. The flow duration is either driver-gas-limited or expansion-limited, respectively.

Figure 28(c) shows the flow duration in the test section as- a function of the Mach

number of the incident shotk. Here, it can be seen that for operation at low Mis,

running times of over 25 milliseconds can be obtained-with a long driver section. When
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performed under these latter conditions at high pressures and high Reynolds numbers,

the test running times are of the same magnitude or longer than for piston-driven

tunnels (48, 41 with comparable stagnation temperatures, and the reservoir conditions

and flow quality are superior to those of piston-driven tunnels. This results from the
fact that the test gas is processed by a simple reflected shock rather than by the

multiple shocks of piston-driven tunnels. A further consequence is that the free stream

conditions can be calculated far more accurately in a shock tunnel. Note -that when

sensitive high-frequency instrumentation is used- in the very severe heating conditions

encountered in interaction -regions in hypersonic flow, running times longer than 20

milliseconds can result in damage to, or destruction of, the sensing element.

4.2.2 Models

Three basic models used in these experimental studies, each associated

respectively with the single shock/bow shock interaction studies, the investigation of

sweep on the shock/shock interaction, and finally the studies of multiple shock/bow

interaction.

The model used -in the studies of the planar single shock/bow shock

-interactions is shown in Figure 29. The highly instrumented 3-inch diameter cylinder

is supported by two side arms, so it can be translated both parallel and perpendicular

to the back of the-shock generator and rotated. The length-of the shock generator and

its position relative to the circular cylinder -is adjustable. In general, the position of

shock impingement is controlled by adjusting the position of both the cylinder and the

shock -generator. The cylinder was heavily instrumented with heat transfer and pressure

instrumentation as shown in Figure 30. As shown, the instrumentation is concentrated

in a high density region on the cylinder to provide the resolution needed to define the

peak heating and the large heat transfer gradients which are generated in Type -II and

IV interaction regions. In almost all of the experiments the cylinder was rotated so

that this high density segment was positioned- in the interaction region. A listing of

the gage positions on the cylinder is given- in Table 2.

A schematic diagram for the model used- in this study is- shown in Figure

31. For this study new- shock generators and ramps were -constructed to provide a- range

of shock strengths and relative positions for the two incident shocks. The angles of

the shock generator plate and the ramp were varied to change the strengths of the
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Figure 29 SHOCK -INTERFERENCE MODEL MOUNTED IN CALSPAN'S- 48-INCH
HYPERSONIC SHOCK TUNNEL

0.500 -

0.375 -

ThIn film

Figure 30 INSTRUMENTATION- SCHEMATIC OF CALSPAN'S 48-INCH HYPERSONIC
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two incident shocks. The positions of the intersection of the incident shocks with the

bow shock ahead of the cylinder were controlled by translating the ramp and the shock

generator piate relative to the support system and each other as well as adjusting the

elevation and streamwise locatioi -)f the cylinder. Again the cylinder was rotated to

place high density instrumentation segments inthe interaction region.

4.2.3 Heat Transfer Instrumentation

The large heat transfer gradients that are generated in the interaction

regions on the cylinder can be significantly distorted by lateral heat conduction unless

the heat -transfer instrumentation is mounted on an insulating surface. Because our
platinum thin-film gages are mounted on a pyrex substrate, they are well suited for

this application. However, with heating rates up to 1000 Btu/ft 2 /sec, the rise in surface

temperature during the shock tunnel's short run times can also lead to problems with

data analysis and interpretation. As shown in Figure 30, the platinum films were

deposited on cylindrical glass inserts forming a continuous circumferential surface. Two

sets of circumferential inserts were employed with overlapping gage positions to check

the accuracy of -the measurements. These gages have a microsecond response time

and can easily follow the instabilities -which can occur in shock/shock interaction regions.

4.2.4 Pressure Instrumentation

We used-both flush-mounted-and orifice pressure gages in these studies to

obtain measurements of the mean and fluctuating pressure levels through the interaction

regions. Calspan piezoelectric pressure gages were connected to a series- of short,

closely spaced orifices to obtain the mean pressure distribution around the model.

Larger high-frequency PCB quartz transducers were flush-mounted beneath a thin

insulating skin to the surface of the model in key areas of the flow.

4-.2.5 Flow Visualization

We used a single -pass schlieren system with a focal length of 10 feet -for
flow visualization in this study. The knife edge was-set parallel to the conical segment

which precedes the concave section of the model, and adjusted to give a 15% cut-off.

A single microsecond -spark is triggered close to the -end of the steady runtime. The

tunnel windows have a 16 inch diameter.

I - -
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5. TEST PROCEDURES

5.1 Introduction

Two aspects of this experimental program make the reduction of the
measurements relatively unique. First, for some test configurations, the heat transfer

rates were so large that gage temperature increases-of over 500OF were not uncommon
for the 15 millisecond run times, generated in the 48-inch Shock Tunnel fitted with a

40-foot-long driver. Second, in a significant number of cases with Type IV interactions,
unsteady oscillations were observed in the jet impingement region. Large flow

instabilities were observed for typical frequencies of 2 to 5 kHz. In some cases, we
also experienced spurious flow transients resulting from the interaction between the

bow shock and wedge support system which were mounted close to each other. These

problems, coupled with the large number of measurements recorded on the -two separate

data systems with significantly different characteristics, stimulated the development of

a new, faster and more complete data reduction capability. This new reduction and

presentation system provides on-line reduction, plotting and analysis capabilities for

measurements in unsteady flows with very large heat transfer rates.

Analyzing HST voltage time histories acquired by the PDP-11/73 (also
known as the DDAS 1I) or NAVCOR facilities is an integral part of Calspan's data

reduction process. Until recently, the software did not provide a convenient means
for merging time histories from the two independent data collection systems. Program

CUBRED I was designed to permit the integration of raw voltage files -for subsequent

analysis of temporal and frequency-related phenomena. Additionally, the program was

extended to include some new features and offline processes. The Rae-Taulbee algorithm,
which accounts for variable thermal properties, is now an alternative to the Cook-

Felderman numerical technique for computing heat transfer profiles. The detailed

development of the Rae-Taulbee algorithm is in Appendix A. CUBRC's COMPAQ 386

computer, an -IBM PC-AT clone, was chosen for the new software design because of

its simplicity, computational speed and portability.

The architectures of the data collection devices differed- greatly. The
sample spacing, number of samples, and test duration in DDAS II acquired files may

I. Developed under -internal research.
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vary. NAVCOR files, on the other handi have 300 samples spaced 50 microseconds

apart over 14.95 milliseconds. A separate program (NCTODD) is used to accomplish

the merger of NAVCOR and PDP files. NAVCOR raw voltage time histories on merged

files are altered to conform to the DDAS 11 run specifications. Potentially, a total of

177 channels (128 from DDAS I, 49 from NAVCOR) may be examined and archived

efficiently.

5.2 Evaluation of Stagnation and Freestream Test Conditions

The stagnation and freestream test conditions were based on measurements

of the incident shock wave speed, Ui, the initial temperature of the test gas (in the

driven tube), TI, the initial pressure of the test gas, Pl, and the pressure behind the

reflected shock wave, po. The incident shock wave Mach number, Mi = Ui/al, was

calculated where the speed of sound, a1 , was a function of P, and T 1. The freestrearn

Mach number, M, , was determined from correlations of M. with -Mi and po. These

correlations were based on previous airflow calibrations of the D nozzle.

Freestream test conditions of pressure, temperature, Reynolds number,

etc., were computed,- assuming isentropic expansion of the test gas from the conditions

behind the reflected shock wave to the freestream Mach number. Real gas effects

were taken-into account for this expansion under the justified assumption that the gas

was in the thermochemical equilibrium. In the freestream, the static temperature, T.,

was sufficiently low that the ideal gas equation of state, p. = pRT was applicable

where R was the gas constant for the test gas.

The stagnation- enthalpy, Ho , and -temperature Top of the gas behind the

reflected shock wave were calculated from:

1~

where (H5/H l ) and (T51T I) are functions of Ui (or MI) and P1 and are given in

Reference 4 for air. H1 was obtained from Reference 5 for air, knowing P1 and T I .

The freestream static temperature -was found fiom the energy equation,

knowing- H0 no~ T,= H, 1~f~

I A

] "-2
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where Cp 6006 ft-lb/slug R ° and "Y 1.40.

The freestream static pressure was calculated from

p.. p ( (y-
where P P 2

(P-. /Po)Real

Pideal (Po0 /Po)ldeal

is the real gas correction to the ideal gas static-to-total pressure ratio as described

in Reference 6. The sources for the real gas data used in this technique were

References 7 and 8.

The freestream velocity was determined from

U-.= Al a. where

a, . y.,RT4J , the- spebd of sound.

The freestream- dynamic pressure was found from
I -

and the freestream density than was calculated from the ideal gas equation of state
P.= p.IRT.

where R = 1717.91 ft-lb/slug- R° for air. Values of the absolute viscosity, U,- used to

compute the freestream Reynolds number per foot were obtained from Reference 5.

The test section pitot pressure, pol, was determined from q. and the

ratio (po'/q,). This ratio has been correlated as a function of M,,. and Ho for normal

shock waves in air in thermodynamic equilibrium.

1 --
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5.3 Reduction of Measurements of Pressures and Heat Transfer

5.3.1 Measurement Time Selection

Measurements were made during the current studies for a number of

different test conditions and tunnel configurations. While in all cases the basic flowfield

had stabilized within several milliseconds, we observed flow instabilities which we

believe were an intrinsic feature of these flows for some model configurations. For

example, a Type IV interaction (where the jet tries to impinge normal to the cylinder

surface) we observe a movement in the peak heating and presure which suggests that

the jet oscillates, deflecting above and below the normal impingement point. Under

such conditions the data was read just preceeding the schlieren photograph of the flow,

to avoid electrical interference from the spark source. In cases where there was some

degree of flow unsteadiness, the selection of the time and duration over which the

data was averaged was based on an exhaustive analysis of all the measurements and

flow visualization made in this-program, together with experience gained in many earlier

experimental studies. The summary of test times are tabulated in Table 3.

5.3.2 Pressure Measurements

The measured voltages from the pressure transducers were reduced to

engineering units (psi) by applying the amplifier gains and the transducer calibration

factors. The pressures were then -converted to absolute pressures (psia) by adding the

measured initial vacuum pressure -in the test section. The latter was the reference

pressure for the transducers. The pressures were then averaged over -the time interval

of steady flow to obtain an average value for each case. The values of the pressure

coefficients, CpY were calculated from

Cp = (p - p .)q.,

where p was the measured model pressure (psia).

The pressure ratio was also calculated by dividing the -pitot pressure,- po.

into the model pressure.

, .

(1

' I
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5.3.3 Heat Transfer Measurements

The thin-film heat transfer gage is a resistance thermometer which reacts

to the local surface temperature of the model. The first step of the data reduction was

to convert the measured voltage time history for each gage to a temperature time

history, taking into account the gage resistance, the current through the gage, the gage

calibration factor, and the amplifier gain. The theory of heat conduction was used to

relate the surface temperature to the rate of heat transfer. Because the platinum

resistance element has negligible heat capacity and, hence, negligible effect on the

Pyrex substrate surface temperature, the substrate can be characterized as being

homogeneous and isotropic. Furthermore, because of the short duration of the shock

tunnel test, the substrate can be treated as a semi-infinite body. The one-dimensional

heat conduction equation is

,Oc(t) = -(kt 6T)

where /, C, and k are the substrate density, specific heat, and, thermal conductivity,

respectively; y is the distance normal to the substrate surface; and- T(t) is the transient

surface temperature rise (T(0)=0). Final data reduction was done using the Raw-Taulbee

method to solve the heat conduction equation numerically as descripted in Appendix

wever for a quick look at the data the Cooke Felderon method was used

m

q (ti) = 2 _)-1 (tin 1t/)2  (tm - ti_l)l/2

where m is the number of time interval steps from t = 0 to tm . In as much as the

heat transfer gage outputs- were sampled at constant time intervals of 50 or 100 usec

and were digitized by the DDAS, this equation provided a straightforward method for

calculating the heat transfer rates. The heat -transfer rates, q (t), were averaged over

the steady-flow portion of each test run- to obtain a value of q for each gage. Initially,

the heat-transfer rates were calculated with time t = 0 taken just before the arrival

of the airflow. It was found that because the heat transfer gages responded to the

nozzle cooling flow, which was initiated before- the airflow, the heat transfer rates had

to be recalculated with the time t 0 taken prior to onset of the cooling flow.

(t

I*
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The equation above is valid for constant values of (ICk), whereas and k

are functions of the substrate temperature. A correction for the variation of (Ck)

with temperature was applied using the method of Reference 54.

The Stanton number, C/, based on the freestream conditions, was

* calculated from the following

0H~ q
p.T4 H. -H.)

where J = 778.26 ft-lb/BTU, and Hw is the enthalpy at the measured wall temperature.

5.3.4 Measurement Recording System

All data were recorded on- a 128-channel Calspan- Digital Data Acquisition

System II (DDAS W1 . This system consists of 128 Marel Co. Model 117-22 amplifiers,

an Analogic ANDS 5400 data acquisition and distribution system and-a Digital Equipment

Corp. LSI 11/73-computer. The Analogic system functions as a transient event recorder

in that it acquires, digitizes and stores the data in real time. Immediately after each

test run the data is transferred to the DEC computer for processing.

The Marel amplifiers provide gains up to 1000 for low level signals, can

be AC or DC coupled to the transducers, and have selectable low-pass filters with cut-

off frequencies of 300, 1000 or 3000 Hz. The Analogic system contains a sample-and-

hold amplifier, a 12-bit analog-to-digital converter and 4096 sample memory for each

channel.

After the data are transferred to the DEC computer, plots of the analog

voltage time histories are generated to determine the overall quality of the data and

to select the steady-flow time interval. The data are then reduced to engineereing

units (psi or OF) and, in the case of pressures, averaged over the selected steady-flow

time interval. The calculation of heat transfer rate from the temperature time history

requires an additional- data reduction step that is described in Section 5.3.3.

The raw data (voltage) time histories are transferred to magentic tape

for archival storage while temporary storage of raw and reduced data is on one of the

three disk drives of the DEC computer. Tabulations and time history plots of raw

and/or reduced data are generated using the computer's printer.

(
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6. RESULTS AND DISCUSSION

j 6.1 Introduction

The studies discussed here provide detailed experimental measurements

and insight into the key mechanisms associated with the aerothermal loads induced by

shock/shock interaction in high Mach number (6 to 19) hypersonic flows, where little

t such detailed information exists. In each study, our investigation centered on flow

configurations that generate the largest heating loads and were of greatest interest in

terms of developing simple flow models and detailed code validation. In the first study,

we investigated the effects of Mach number on aerothermal loads generated by Types

I111, IV and VI interaction regions for Mach numbers between 6 and 19 a small part of

this latter study was devoted to examining sweep effects. In the second study, which

was conducted at Mach 8, we examined the flow structure and aerothermal loads in

the shock/shock interaction regions induced by multiple incident shock/boW shock

interaction to -determine if heating loads induced by two separate shocks incident on

a bow shock in the stagnatien region induce heating loads greater than if the shocks

had coalesced before incidence.

6.2 Mach Number Effects on Single Shock/Bow Shock Interaction

Edney's-earlier studies suggest that Mach numbers between 10 and 19 and

flow deflection between 11 and 14 degrees produce the maximum heating enhancement.

Based on this, we selected a 12.5 degree shock generator angle for our studies.
Measurements of the distribution of heat transfer and pressure in the !nteraction regions

were made at Mach 8, 11.2, 15.6 and 18.8. At each Mach number, a series of runs

were made at various incidence shock positions to obtain a series of flows between

Types-Ill and IV interactions. Test conditions, heat transfer and pressure measurements,

plots of these quantities and Schlieren photographs for each test condition are provided

in Appendix B. The cylinder was rotated to place the high-density region of the

instrumentation in the region of maximum heat transfer. Measurements of the

distributions of pressure and heat transfer -to- the cylinder -in -the -absence of the -incident

shock vere made at Mach 8 and 16 and are shown compared with theory in Figures 32

and 33. The measurements are in good agreement with the Fay and Riddel (49 1 stagnation

value and the Rose, Kemp and Detra( 4 6 1 distribution. The-variation of the distribution

of pressure and heat transfer with the shock impingement point at Mach-8 are shown for
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a series of measurements in Figures 34a through 34f. For the Type IV interaction, an

extremely rapid rise in heat transfer and pressure at the base of the jet was observed.

However, we did not observe a local plateau in the maximum heating across the jet

width. Instead, a local point maximum, whose position responded to the unsteady

movement of the jet, was observed over a fraction of the jet width.

Our measurements show that for interactions where the jet is almost

normal to the surface, a small flow unsteadiness (shown in the heat transfer and pressure

records in Figure 35) causes the jet to fluctuate between flowing upward or downward.

We observed typical oscillation frequencies of between 3 and 10 kHz for some Type IV

interactions. As the impingement position was moved away from the stagnation region

and the interaction changed to a Type III interaction, initially we observed little decrease

in the peak heating or the pressure and heat transfer distributions. With the peak being

so narrow and the gradient so steep, selecting a meaningful peak value is difficult, if

not impossible. In addition, lowering the impingement point -esults in a rapid decrease

in the overall level of heating and pressure in the interaction region. The same basic

trends appear at Mach 11, as shown in the distributions of Figures 36a through 36c.

In Figure 36a, we see a Type IV interaction with jet impingement slightly below the

stagnation point where the heating level is less than when the interaction is moved

away from the stagnation point (Figure 36b). Moving- the interaction further around

the body again reduces the overall heating levels, although again, the gradients are so

steep that a maximum in the pressure and heat transfer is difficult to accurately

define. The measurements at Mach 16 (Figures 37a through 37e) show the sensitivity

of the aerothermal loads in the Type IV interaction to the position of the jet

impingements. We also observe that for these totally laminar interactions, there is-no

dramatic change in the pressure and heat transfer distribution when there is a change

from a Type IV to a Type Ili interaction. In the Mach 18 studies, we captured a Type

IV flow configuration where the jet was deflected well above the centerline (Figures

38a through 38d), with a resultant significant .op in peak aerothermal loads relative

to the Type IV interaction where the jet impinges below the centerline. Again, as the

interaction is moved lower on the cylinder, the loads diminish. While defining a peak

heating load is difficult, the general trend of peak heating- and -pressure with the position

of jet impingement is shown in Figure 39. Figure 39 shows that peak loads occur when

the interaction is approximately 20 degrees below the stagnation point, regardless of

the Mach number. Plotting the peak heating and pressure enhancement against peak

pressure ratio (Figure 401, we see that the interactions become more severe when

N
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transition occurs. For Types III and IV interactions, the peak heating enhancement is

plotted against the pressure enhancement as suggested by Edney. Keeping in mind the

intrinsic problems in preparing this correlation, the Y2-power law relationship appears

to be as useful as any other. In support of our contention that #6 larger heating

augmentations are asociated with transitional shear layers for the type III interaction

we have plotted in Figure 40b the Reynolds number based on the length of the free

shear layers measured in our studies on the Burch compilation of shear layer transition

measurements shown in Figure 4. We observe that the measurements at Mach 8 and

16 which exhibit the large heating augmentations are those with shear layer Reynolds
int he range of 105 to 106.

6.3 Studies of Multiple Shock/Shock Interaction

The severity of the aerothermal loads induced by shock/shock interaction

has led to speculation on- techniques that can be used to reduce loads for configurations

such as inlets, where the compression must be captured. Preventing -the formation of

a single bounding shock and allowing multiple shock impingement on the inlet lip may

significantly reduce the peak heating and pressure loads. Here, we briefly discuss the

results of a preliminary study to examine such an approach. We selected two

configurations that generated total flow turning angles of 12.5 and 13.5 degrees in

7.5/5 degree and 7.5/6 degree two-shock-generation configurations. These configurations

were selected to match the interaction strengths developed in the earlier studies. We

examined configurations where the two shocks coalesced before the bow shock to one,
when the shocks impinged on either side of the stagnation line. All the measurements

were made at Mach 8- and a Reynolds number of 1.5 x 106. Test conditions, heat

transfer and-pressure measurements, plots of these quantities and schlieren- photographs

for each test condition arc provided in Appendix C. The pressure and heat transfer

distributions for the 7.5/5 studies are shown in Figures 41a through 41e. Starting with

the flow configuration where the incident shocks combine ahead of the bow shock

(Figure 41al and translating the shocks relative to the cylinder and each other, we

observe the following results. First, the peak heating loads are significantly reduced

by allowing multiple impingements. Spreading the shocks about the stagnation line

results in the greatest reduction, as shown in Figure 41b. Even very small relative

displacements, as shown in Figures 41c and 41d, can-cause significant loading reductions.

The flow configuration in Figure 41d is of particular interest because a jet and shear

layer are formed in this flow. For completeness, we also show the measurements for

k

_ ---
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the 7.5 shock generator only in Figure 34e. A similar flow of interest is shown in

Figures 42a through 42e from the 7.5/6 studies. However, the enhancements occur
when the shock coalesces ahead of the bow shock. Notice that in this series, separating

the shocks does not cause as great a reduction as in the 7.5/5 configuration.
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7. PRELIMINARY STUDIES OF SWEEP EFFECTS ON REGIONS OF SHOCK!

SHOCK INTERACTION

7.1 Introduction

Regions of shock/shock interaction are seldom two-dimensional in most

practical situations. Therefore a knowledge of the effects of crossflow is important.

One controlled way of studying this effect is to sweep the interaction region creating

a quasi-two-dimensional flow. Practically, this can create problems with end effects

and introduce an additional fundamental phenomena-attachment line transition., At

large Reynolds numbers, the absence of an incident shock sweeping the cylinder

introduces a crossflow instability at the attachment line which if large enough can

result in transition and turbulent heating along the attachment line. With a shock

incident on the swept cylinder we therefore have the potentially interesting situation of

a shear layer or jet incident on a turbulent attachment line. While, as discussed later

there are criteria for predicting turbulent heating on sweep cylinders clearly no such

information is available for shock/shock interaction regions. Therefore the results from

these studies must be carefully interpreted to distinguish between sweep and transition

effects.

7.2 Experimental Studies

This was an intrisincially difficult experiment to conduct because we were

attempting to place the incident at the same radial station on the bow shock along

the entire length of the cylinder. To achieve this we fabricated inserts which fit

between the support system and shock generator which rolled and yawed the shock

generator to place its leading edge in the same plane as the stagnation line of the

cylinder. Because we have only one set of schlieren window stations we were unable

to align the optics with the axis of the swept cylinder therefore, as shown in Figure 43
the flow visualization does not provide definitive information on the structure of the

flow field.
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Figure 43 TYPICAL SCHLIEREN OF 15* SWEPT CYLINDER AT MACH 8
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Measurements of heat transfer and pressure around the cylinder were made

for sweep angles of 15 and 30 degrees with a shock generator angle of 12;5 degrees.

At each sweep angle the position of the incident shock was varied to search for the

maximum heating rates generated by type Ill and IV interation- regions. The

measurements made in this segment of the program are plotted and tabulated in

Appendix D.

7.3 Discussion of Measurements

The distribution of heat transfer and pressure for the two sweep -angles

without an incident shock are shown in Figure 44(a-b). While the measurements on the

15' swept cylinder are in good agreement with laminar theory, the heating levels- for

the 30' sweep exceed the laminar case. As discussed earlier there is a strong likelihood

that attachment line transition has occurred- in the latter case.

The boundary layer along the attachment line of a swept cylinder has

been examined- in a number of earlier studies concentrated principally in subsonic and

low supersonic flows. In supersonic compressible flows the characteristic of attachment

line boundary layer can be described in terms of the parameters Me, R, Tw/Te, VA and

Pr. Here the crossflow Reynolds number is -by

R VA V1

Where 11 is the characteristic scale length of the attachment line boundary

layer depends on the chordwise velocity gradient dU/dx,,and the kinematic viscosity

selecting

v UA

then =  --V/

or R ( (VU)

R 4 N U I
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w h e r e 4 1 .

For incompressible laminar flow, it can be shown that the heating rate

to the attachment line is given by

5tA 0.71 f

For uncompressible turbulent flows the attachment line heating can be

expressed as

0.0689 1
A 2Pr2 /3 ArO.42

To account for compressibility effects employing a reference temperature at which the
properties of the flow are evaluated, has been used successfully for flat plate and cone
flow. Poll (5 31 has suggested that for the attachment line a reference temperature

defined by the relationship

TA=0. 1T,+O.69TU O+'.3Te

is the most appropriate for attachment line flows.

The expressions for laminar and turbulent attachment line heating in

compressible flow then become

= q 0.571 U P.TA )sinX./2"7)
P -U (,,,- tj 'TT VkPTM M. Red..

for laminar flows and

q0.0689 (pA) 0,*O79 U. )0'\I12 1 .' XCS02 i

With the above discussion in mind it is- interesting to compare the pressure
and heating levels for the type IV/1ll interactions for sweep angles of 0, 15 and 30

degrees shown in Figures 36, 45a and 45b respectively. We see that there is reduction
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in heating of between 20 and 30 percent when the cylinder is swept 30 degrees. More

definitive and detailed measurements are required however before vie can define the

changes in flow field and aerothermal loads in swept interaction regions. In particular,

experiments are required in higher Mach numbers flow were the interactions are

completely laminar.

8. CONCLUSIONS

A study has been presented of the aerothermal characteristics of two-
dimensional shock/shock interactions generated by single and multiple shock incidence

on a cylindrical bow shock. These studies were conducted at Mach 8 to 19 in the

Calspan 48-inch Shock Tunnel. The severity of the heating loads requires the use of

insulated models and short test times to prevent distortion from lateral heat conduction.
In the first of two studies reported here, the detailed measurements of the distribution

of heat transfer and pressure were made for Types III and -IV interactions in laminar

flows at Mach 8 to 19. The measurements at Mach 11 to 19 indicated that the severity
of the interaction increased with transition and increasing Mach number, as suggested

from simple models. The measurements at Mach 8 are believed influenced by shear

layer transition. The laminar measurements should provide a detailed data base for

code validation. However, some Type IV interactions where maximum heating occurs
can also be unstable and, therefore, may be difficult to predict with accuracy. The

studies of multiple shock interaction demonstrated that the largest heat loads are

generated on the cylinder if the shocks coalesce before they are incident on the cylinder.
While the flow fields and aerothermal loads generated by multiple shock impingement

will provide excellent test cases for code prediction, the peak heating loads are

significantly less than for a single shock of the same strength. Due to the low Reynolds
numbers at which transition occurs in these flow fields from either single or multiple

shock/shock interactions, coupled with the occurrence of flow instabilities for Type IV

interactions, it will be difficult to accurately predict such flows over a large and

important part of the flight regime.

Ir
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Appendix A

A REVIEW OF THE CHARACTERISTIC OF REGIONS OF SHOCK WAVE/

BOUNDARY INTERACTION FOR LAMINAR AND TURBULENT HIGH SPEED FLOWS

WITH HEAT TRANSFER

1. INTRODUCTION

In both laminar and turbulent flows, the aerothermal loads associated with

viscous/inviscid interaction or shock/boundary layer interaction present the most serious

design problems, and at the same time are the most difficult to compute with accuracy.

In supersonic flows, regions of shock wave/boundary layer interaction have the largest

impact on aerodynamic load. In hypersonic flow, the large thermal loads and gradients

generated in turbulent shock interaction regions are of the greatest concern. However,

the large dynamic loads associated with intrinsic unsteadiness of these flows, of course,

also remain a principal concern. Although the aerothermal heating loads associated

with regions of shock wave/turbulent boundary layer interaction will present significant

problems in hypersonic flight at low altitudes, it may be the laminar viscous/inviscid

interaction and flow separation, which occurs in high altitude hypervelocity flight, which

provides fundamental limitations on the performance -of maneuvering hypersonic vehicles,

and in particular those employing airbreathing propulsion systems. The effectiveness

of jet interaction and flap control systems and intakes and combustors of hypersonic

ramjets may be seriously reduced as the compression surfaces are in essence "faired

in" by viscous/inviscid interaction and flow separation in the high altitude regime. The

use of boundary layer control to alleviate such problems is made difficult in hypersonic

flow because the major portion of the mass and momentum in a laminar boundary layer

over a cooled wall is contained at its outer edge. Since the severe heating loads in

shock/boundary layer on certain key components may mandate the use of ablative- or

transpiration-cooled thermal protection systems, the effects of surface roughness and

blowing on the characteristics of shock/boundary layer interaction over such components

can constitute important and, as yet, unresolved problefns.

Over the past 15 years, there has been a massive increase in computational

capabilities with which to make a direct assault on the Navier-Stokes equations, and

in particular, the problem of describing regions of shock wave/boundary layer interaction

with embedded regions of recirculating flows. Such methods have met with great

success in describing regions of shock wave/laminar boundary layer interaction in
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hypersonic flow, as described in Section 2. Some questions for flows with large embedded

separated regions have been resolved by three-dimensional computation of these flows.

For turbulent flows, predictions based on Navier-Stokes code have met with little real

success when attempting to describe separated interaction regions in hypersonic flow

and, as discussed in Section 3, it is not clear whether the problem lies in the turbulence

modeling, compressibility effects, or in the intrinsically unsteady characteristics of

these flows.

In this brief review of laminar and turbulent shock wave/boundary

interaction phenomenon with heat transfer, we focus on the salient characteristics of

two classes of interaction phenomena. The first is generated by flows over compression

surfaces where the shock waves are developed "internally" and the upstream influence

and flow separation are developed by "free interaction" between the viscous and inviscid

flow. The second is induced by the impingement of a- shock wave onto the boundary

layer. We first discuss the general features and prediction of -laminar interaction flows.

We then describe the corresponding, but significantly different fluid mechanic

mechanisms, associated with turbulent boundary layer subjected compression corners

and incident shocks, and the simple and advanced computational methods which have

been used to predict the characteristics of these flows.
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2. SHOCK WAVE/LAMINAR BOUNDAIRY LAYER INTERACTION

2.1 INTRODUCTION

While predicting the detailed structure of turbulent separated regions of

shock wave/boundary layer interactions is one of the most difficult tasks in the design

of control systems and inlets on airbr,-athing vehicles, it is the occurrence of large

separated regions induced in laminar viscous/inviscid interactions which may present

the greatest problems. Closely coupled with the viscous/inviscid phenomena are the

effects -of leading edge bluntness and boundary layer displacement, which are always a

factor in realistic designs for high altitude hypersonic vehicles. The viscous/inviscid

interaction at the leading edges of flat plates and cones have been studied extensively

for both sharp and blunt tips. The reduction in density and momentum close to the

wall induced by bluntness effects, coupled with -the intrinsic feature of the laminar

hypersonic boundary layer (concentrating the mass and momentum at its outer 6dge)

may make it very difficult (but nevertheless important) to employ boundary layer

control. For continuum flows in the absence of real gas effects, the prediction methods

developed by Cheng1 and subsequently verified in a number of experimental studies

provide a very simple way of predicting the distribution of pressure and heat transfer

to sharp and blunted bodies. Typical correlations for leading edge interaction

measurements are shown in Figures 1, 2 and 3. For gross design purposes, prediction

based on these models would be more than adequate. However if the leading edges

are transpiration or ablatively cooled and if the detailed structure of the shock layer

is required, more sophisticated codes must be employed. The predictions on the Navier-

Stokes equations, which have carefully handled in the shock/viscous layer very close to

the leading edge, should therefore provide accurate predictions.

2.2 GENERAL FEATURES OF LAMINAR INTERACTION REGIONS

Maintaining a fully laminar region of shock wave/boundary layer interaction

in supersonic flows has proved difficult. However, the increased stability of the laminar

boundary in hypersonic flow coupled with lower Reynolds numbers associated with high

altitude flight has made laminar regions of viscous/inviscid interaction of significant

practical importance. A number of important features are observed in laminar

interaction regions which are associated with the extensive nature of the interaction

regions, and the effects of nose tip bluntness, and surface curvature. In hypersonic

1.
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flows, the pressure rise along a region of viscous/inviscid interaction can extend over

twenty boundary layer thicknesses downstream of the interaction, as illustrated in

Figure 4, for both attached and separated flows. Pressure rises of over two orders of

magnitude occur through the almost isentropic expansion in the reattachment compression

region, and in contrast to turbulent interactions, large overshoots in heat transfer and

pressure are observed in this region. Correlations of the pressure rise to induce incipient

separation and the plateau pressure in the separated regions of these flows are presented

in Figures 5 and 6. Employing a blunt leading edge can significantly reduce the pressure

recovery on the compression surface, as illustrated in Figure 7. It is clear that

maintaining thin leading edges is an important feature of an inlet design. It is interesting

to note, as illustrated in Figure 7, that while the pressure and heat transfer through

the interaction region are strongly influenced by nosc tip bluntness, boundary separation

occurs at approximately the same wedge angle, although at a significantly lower overall

pressure rise. Correlations of bluntness effects on the characteristic of these flows

are given in Figures 8 and 9. The effects of surface curvature on boundary layer

separation was studied in References 2 and 3. It has also been found that, while in

turbulent flows, introducing small surface curvature dramatically increased the pressure

rise to induce incipient separation, as illustrated in Figures 10 and 11, surface curvature

has little influence on separation in laminar hypersonic flows.

2.3 PREDICTION TECHNIQUES

There have been two basic approaches to predict size and properties of

laminar attached and separated -interaction regions in separated flows. The first is to

employ the first or second order boundary layer equations, coupled through equations

describing a displacement surface to the outer inviscid flow-viscous/inviscid interaction

flow models. The second is to employ the full (or slightly reduced) Navier-Stokes

equations; here there is no need to include the interaction modeling. While the first

approach is now virtually obsolete, i.t is interesting to review its conceptual aspects.

Most of the viscous interaction models have their-roots in the early studies of Howarth4 ,

Lighthill 5 , and Owatitsch and Weighardt 6 who attempted to understand and model the

mechanism of upstream influence. While it was initially believed that upstream influence

could be described in terms of upstream propagation through the subsonic region of

the boundary layer, experimental studies demonstrated significantly larger upstream

influence in laminar flow than predicted from such models. For laminar flows it was

shown that upstream influence and flow separation could be described with good accuracy
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by a model in -which the viscous layer grew by mutual interaction with the outer inviscid

flow. Using a semi-empirical modification of the Crocco-Lees 7 method based on this

"free interaction" model, Glick3 was able to successfully describe the properties of a

complete shock-induced separated region. To eliminate some of the semi-empirical

features of Glick's method, Honda 9 and later-Lees and Reeves' 0 , added a third equation,

the moment of momentum equation, and obtained a generally good agreement with

measurements in supersonic separated flows over adiabatic walls. To predict laminar

viscous interaction regions under highly-cooled wall conditions and the associated

reattachment heating, Holden 11 added the integral form of the energy equation to the

equations for mass, momentum, and moment of momentum employed by Honda, using

Cohen and Reshotko's 12 similar solutions as proposed by Lees and Reeves. Reasonably

good agreement was found between theory and experiment at Mach numbers in the low

hypersonic range. At high Mach numbers, Holden showed that the normal pressure

gradients must be included in the description of hypersonic interaction regions to

describe such flows. A comparison between Holden's theory and the measurements of

skin friction, pressure and heat transfer made on the flat-plate, l 0 -wedge is shown

in Figure 12. Incorporating Po/PY- into the formulation enabled a solution to be

obtained where previously artifices, such as the super-subcritical jump, would have to

be employed to overcome the problems inherent in conventional boundary layer theory

for cooled wall- hypersonic flows. Such approaches have been made obsolete by the

conduction of computer and algorithms successfully capable of efficiently solving the

Navier-Stokes equation. However, a rapid prediction of the occurrence of separation

and heat- transfer in the reattachment regions of shock and wedge induced interaction

regions can be made with the aid of the correlations shown in Figures 5, 6, 13, 14.

The explosive development of computing power and the numerical

techniques for the direct solution of the Navier-Stokes equations for laminar flows has

virtually eliminated contemporary efforts to model or correlate the characteristics of

laminar separated flows. Beginning twelve years ago with explicit Navier-Stokes solutions

by McCormack 13 for laminar separation in supersonic and hypersonic flow, there has

been a continuing and rapid- development which in 1989 is typified by the calculations

by Rudy et al. 14 with a series of both explicit and upwind implicit Navier-Stokes codes.

Examples of comparisons between the results of such computations and measurements

in laminar shock- and wedge-interactions- are shown in Figures 15 and 16. Here we see,

as shown in earlier computations, that the solutions are capable of accurately predicting
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the detailed surface and flow properties and the timewise develop of separated flow

induced by incident shocks and compression corners.

These solutions, and those obtained in earlier numerical studies demonstrate

that correctly gridding these flows, especially in the reattachment compression region,

is an important factor in attaining accurate solutions. However, when a grid with

adequate resolution is employed these solutions can accurately predict not only the

distribution of flow and surface properties of two- and three-dimensional interaction

but also the timewise development of these flows. An important next step is to provide

guidelines to specify the grid spacing for the flows. Once this has been accomplished,

it would appear that experimental studies of laminar viscous/inviscid interaction would

be best concentrated on high temperature flows with chemistry and those bordering

the noncontinuum flow regime. Understanding the flow mechanisms in shock
wave/turbulent boundary layer interaction represents a far more fruitful area for

experimental research.

3. SHOCK WAVE/TURBULENT BOUNDARY LAYER INTERACTION IN

HYPERSONIC FLOW

3.1 INTRODUCTION

Regions of -shock wave/turbulent boundary layer interaction, in which large

pressure gradients, flow separation and turbulent nonequilibrium flows are generated

have traditionally been the testing ground of prediction techniques, particularly those

based on the solution of the full Navier-Stokes equations where the recirculating flow

can be handled "more exactly". However, despite the significant advances in

computational techniques during the past decade, there remain significant gaps in our

understanding and ability to model and predict regions of shock wave/boundary

interactions in supersonic and hypersonic flows. At the heart of the problem lies the

difficulty of describing the generation and development of turbulence in the extremely

large pressure gradients developed across shock wave which penetrate the boundary

layer and the-associated problems of flow unsteadiness and compressibility. Also, many

problems which have been ascribed to poor turbulence modeling may, in fact, stem

from the grid selection or nature of the numerical scheme.
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Much 'of the current experimental database on shock-induced turbulent

separated flows comes from studies in which the time averaging characteristics of the

instruments and recording equipment can provide a distorted view of the phenomena

being examined. For example, if the separation shock is continuous in low frequency

motion in a streamwise direction as suggested by earlier studies4 2 ,4 3 , the instantaneous

pressure distribution for mean position -of the separation shock might look as shown in

Figure 17(a), whereas the time average pressure distribution would be as shown in

Figure 17(c). The time-averaged measurements do not provide a meaningful picture of

the violent shock-induced separation process. It is also debatable whether the time-

or mass-averaged Navier-Stokes equation should be compared with the instantaneous

distribution at the mean separation shock location, or the measurements averaged over

a time period longer than the characteristic movements of the separation shock. The

validity of using the time averaged Navier-Stokes -equation to describe these flows is

also in question.

3.2 STRUCTURE AND CHARACTERISTICS OF SHOCK WAVE/BOUNDARY

LAYER INTERACTIONS

The mechanism of shock wave/turbulent boundary layer interaction and

flow separation in hypersonic flows differs significantly from that in laminar flows

particularly in the mechanism of upstream disturbance propagation. While in laminar

flow, it is the -interaction between the high momentum flow at the edge of the boundary

layer and the incident shock wave or model surface (see Figure 4) which is the most

important element in generating the adverse gradients leading to flow separation; in

turbulent flows, the incident shock or wedge shock penetrates to the base of the

boundary layer where a viscous/inviscid interaction takes place (see Figure 18). The

series of photographs showing the development of a turbulent separated region with

increased interaction strength are shown in Figure 18 and Figure 19.

The initial development of the separation region takes place by an

elongation into the laminar sublayer, with the separation and reattachment shocks

combining within the boundary layer to form a single shock. Only when the separation

point has fed well forward of the junction is a well-defined plateau region formed.

Then, in contrast to laminar interaction regions, the separation shock originates at the

bottom of the boundary layer and is contained within the boundary layer until- it

coalesces with the reattachment compression process. In separated regions induced by



4A-8

an externally generated shock, separation first takes place in the region where the

incident shock strikes the laminar sublayer (see-Figure 20). The separation point moves

forward with increasing strength of the incident shock until the separation shock becomes

visible in the inviscid flow downstream of the incident shock; as yet, separation is still
downstream of -the point where the incident shock passes through the edge of the

boundary layer. For large incident shocks, boundary thickening occurs ahead of the
incident shock when a large separated region is induced. However, as in wedge-induced

separated regions, viscous/inviscid interaction takes place almost entirely within the

original boundary layer. The structure wedge and shock-induced turbulent interaction

regions at Mach 13 are very similar to those at Mach 8; however, as we might anticipate
the viscous interaction region and the associated shocks are even more firmly embedded

within the original boundary layer. We find little or no upstream influence ahead of

the separation shock in hypersonic turbulent shock wave/boundary layer interactions.

Surface measurements with high frequency instrumentation indicated
that turbulent separated regions were highly unsteady, and typically the separation point

would oscillate in a streamwise directinn with an amplitude of approximately one-

quarter to one-third of the local boundary layer thickness, at frequencies in the range

from I to 10 kHz (see -Figure 21). While it is difficult to define separation for the

general case of three-dimensional turbulent separated -regions, for two-dimensional steady

flow, we can define incipient separation as the condition where the mean skin friction

is positive everywhere in the interaction region, but at -one point is vanishingly small.

Unfortunately, turbulent interaction regions in hypersonic flow are far from steady and

the problem in these regions becomes how to define incipient separately in an unsteady

flow. In the experimental studies by HoldenI 5 , where dynamic measurements of the

skin friction in turbulent interaction regions were made, the separation conditions were

defined when the time average of surface shear at one point only on the surface was

zero- (see Figure 21). The unsteady character of the records from transducers in the

recirculation region indicated it would be unrealistic to assume that a laminar sublayer

model, in the conventional sense, could be used to describe the lower part of the

recirculating region, as is done in some of the triple deck calculations. Surprising

because of the very different flow field characteristics of the wedge incident shock

interactions, the pressure rise to induce incipient separation was found to be independent

of the mechanism inducing separation from Mach 6 to 13 as demonstrated in Figure 22.

The mean distribution of skin friction, heat transfer and pressure to the wall's bounding,

both shock- and wedge-induced interaction regions were similar for well separated flows

I
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with identical total pressure rises. Both the pressures and heat transfer distributions

are characterized by well-defined plateaus in the recirculation region and-large gradients

in the separation and reattachment regions. Again the plateau pressure was found to

be independent of the type of interaction as shown in Figure 23. The maximum heat

transfer rates generated in the reattachment regions of these flows is of considerable

importance. It has been observed that for separated interaction regions the peak

pressure and heat transfer in the reattachment region could be correlated in the form

shown in Figure 24 for Mach numbers from 2 to 13. Figure 25 shows a correlation of

incipient separation conditions determined in the studies at hypersonic speeds together

with the measurements on adiabatic walls at supersonic speeds. With the exception of

Kuehn's measurements, the effect of Reynolds number is weak. However, the studies

of Kuehn, 16 Sterrett and Emery, 17, HoldenlS, Elfstrom 19 and Appels2 0 indicate that

for Res = 7 x 105 increasing the Reynolds number decreases the angle to promote

separation or decreases the length of a separated- region. Roshko and Thomke 2 1 Lawv22

and Appels2 3 find that increased Reynolds number increases the angle to promote

separation or decreases the length of a separated region. However, Settles, et a, 24

finds incipient separation remains uninfluenced by Reynolds number, while the scale of

a separated interaction region decreases with increased Reynolds number. It remains

to be determined how the method used to define incipient separation can be influenced

by the trend observed. The reader is referred to the original papers by Roshko and

Thomke 21 , Law, 22 Settles, Bogdonoff and Vas24 for a detailed debate on the validity

of each other's techniques and data interpretation.

The influence of Reynolds number on occurrence of turbulent boundary

layer separation and the size of two-dimensional separated regions remains weak and

influenced principally by the characteristics of the upstream boundary layer. Most of

the early studies of shock wave-turbulent boundary layer interaction were made in the

turbulent boundary layer over a tunnel wall. The measurements of Green25, Roshko

and Thomke 2 l, Law2 2, Settles, Bogdonoff and Vas2 4, and Appels 2 3, all made under

adiabatic wall conditions, indicate that increasing- Reynolds number decreases the- size

of a turbulent separated region. In -contrast, the studies of Chapman, Kuehn, and

Larson 26 , Kuehnl6, and Holden[ 8 , Elfstrom and Appels19 at hypersonic speeds, all

conducted on "highly cooled" models mounted in the test section, have shown the

opposite trend. As in the case of incipient separations, the answer may lie in changes

in the equilibrium structure of a turbulent boundary layer with Reynolds number.

I

, - __ _ __

- - - -
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From the experimental studies of turbulent separation in hypersonic flows,

it appears that turbulent separation may be a two-stage process. First, separation

occurs in the sublayer with a very small recirculation region forming, at the base of
the turbulent boundary layer. This region is hihyunsteady. As the steghof the
interaction is increased, a larger turbulent recirculation region is formed and the size

of this region increases rapidly with interaction strength. Thus, of the turbulent

separation process, the occurrence of separation must depend upon the method chosen

to detect it and the relative thickness of the laminar sublayer. For example, the

relatively small thickness of the laminar sublayer in high Reynolds number, highly cooled

flow should make the laminar separation harder to detect and of less importance than

in slightly supersonic flows over adiabatic surfaces. The studies of Holdenl8, Elfstrom,

and Appels 19 in hypersonic flows over lightly cooled walls have demonstrated an abrupt

change in the characteristics of upstream influence when a turbulent boundary layer

"separates." In -contrast, measurements by Spaid and Frishett 27, Appels 2 0, Roshko and

Thomke 2 1, and Settles et a12 4 made under conditions where the laminar sublayer exerts

a far greater influence on the development of separation, demonstrate a less definitive

separation process.

3.3 COMPARISONS WITH NAVIER-STOKES SOLUTIONS

*The complexity of the flow field in -regions of shock wave/turbulent

boundary layer interaction is such that it is unrealistic to expect to describe such

regions in any detail within the framework of the boundary layer equations. As discussed

above, there are questions as to whether the time or mass averaged Navier-Stokes

equations capture the basic fluid mechanics associated with the intrinsically unsteady

nature of separated regions. In hypersonic flows the effects of compressibility on the

structure and development of turbulence must also be considered.

In-the rush to demonstrate that the- Navier-Stokes codes can be successfully

applied to describe a variety of interaction problems, very little emphasis has been

placed on the demonstration that the numerical schemes are indeed an accurate

representation of the equations upon-which they are based. At a minimum, -the sensitivity

to grid size should be examined, and particularly for turbulent interacting -flows, an

analysis of the characteristic scale lengths, as that employed in triple deck theory,
should be performed to aid in grid positioning. The complexity of turbulent interaction

regions makes it essential that detailed information from experiments be used to
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construct realistic models of the turbulent transport mechanisms. The aerothermal

Lenvironment in hypersonic turbulent interacting flows makes delicate- probing of these
flows difficult, and because the typical natural frequencies in these flows are of the
order of 500 kHz, -the instrumentation and recording requirements are highly complex.

While skin friction and heat transfer measurements are useful in the evaluation of

turbulence modeling techniques, employing comparisons with pressure data to support
the models used in a Navier-Stokes code is a weak "verification."

While there have been strenuous efforts to obtain predictions of two-

dimensional and three-dimensional turbulent interaction regions, it is currently recognized

that "successes" with "Navier-Stokes" code in describing some three-dimensional turbulent
interactions regions is a result of the dominance of the pressure and inertial terms in
these flows. In these latter comparisons (References 30 & 43) it was found that the
modeling of turbulence could be changed without significantly changing the numerical

solution. For two-dimensional interactions it appears the modeling of turbulence is
more critical. To obtain good agreement for these latter flows, some very gross

assumptions must be made in the turbulence model. Shang and Hankey 2g, for example,

chose to apply an empirical relationship (selected by matching the length of the separated

region) to rapidly decrease the turbulent scale size through the interaction region.

Horstmann29, however, found the best agreement with Settles' 30 measurements in
wedge-induced separated regions using a two -equation model for turbulence scale size

and vorticity. Working with this same turbulence model, however, Horstmann2 9 was

unable to -predict the occurrence of separation on two -incident shock/turbulent boundary
layer configurations studied by Holden at Mach 11.2. As shown in Figures 26 and 27,

both these flow fields are clearly separated and yet the numperical solution fails to

predict the characteristic plateaus in either the heat transfer or pressure distributions.
The modeling of turbulence in separated interaction regions at- hypersonic Mach numbers
should account for the effects of compressibility and the generation of turbulence by

the unsteady movement -of the incident and induced shocks as they traverse and-interact
with a major region of the turbulent boundary -layer. Clearly, further detailed

experimental work on insightful theoretical modeling is required to develop numerical
prediction techniques which are capable of describing turbulent interaction regions in

detail.

-- - -- ---



4A-12

3.4 SWEPT WEDGE AND SKEWED SHOCK/BOUNDARY LAYER INTERACTION

In many practical situations the oblique shock would be swept thereby
introducing crossflow into the interaction region. Experimental studies of this type

have been conducted by Ericsson, Reding and Guenther 31 , Settles and Perkins3 2, and

Settles and Teng 3 3. Settles, who studied the interaction region over swept and unswept

flat plate/wedge configurations in an adiabatic Mach 3 airflow, found that introducing

crossflow increased the scale of the separated interaction region. Considerable effort

was expended in this latter study to determine the Reynolds number scaling, and the

length from the upstream tip of the wedge for the flow to become quasi-two-dimensional.

However, the effect of changing the overall spanwise scale of the model on the scale
of the interaction was not examined explicitly. The measurements of surface and pitot

pressure through the interaction regions were in good agreement with solutions to the

Navier-Stokes equations obtained by Horstmann 2 9 . More recently Holden 34 performed

studies of crossflow effects on the size and properties of the interaction region induced

by a swept-oblique-shock incident on a turbulent boundary layer over a flat plate at

Mach II and ReL = 30 x 106. Experiments were conducted for cwo strengths of

incident shock, the first (e.SG = 12.50) to generate a separated condition close to

incipient separation, and the second (tSG = 150) to generate a well-separated flow.

Distributions of heat transfer and pressure as well as schlieren photographs of the

unswept or two-dimensional flow condition and the 30 degree swept condition are shown

in Figures 28 and 29. It is clear from -the well defined plateau regions in the distributions

of pressure and heat transfer, as well as the well defined separation shock in the

schlieren photograph, that a well- separated region, extending two inches in length, is

induced beneath the stronger incident shock. The measurements made of the distribution

of heat transfer and pressure beneath the well separated flow induced by both the 12.5

degree and the 15 degree shock generators swept at angles of 0 and 30 (shown in

Figures 28 and 29) indicated that the induced crossflow has little effect on the size

and characteristics of the interaction regions. If there is a perceptible effect, it is a

decrease in the length of the separated region with increased crossflow. The significant

differences between -Holden's and Settles' measurements of the variation of interaction

length with sweep angle and those obtained in these studies are shown in Figure 30.

While Settles finds an almost threefold increase in separation length at sweep angles of

40 degrees, Holden found 10- percent reduction in this length. Further studies are

required to resolve this issue.

_______
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b) Instantaneous pressure distribution

c) Time-averaged pressure distribution

Figure 17 Measurements In unsteady separated turbulent flow
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Figure 18 The development- of- a wedge-induced separated -flow
(Moo= 8.6 ReL.= 22.5 x 106)
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Figure 19 The development -of -a shock-induced separated flow
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SUMMARY

The intake-type of corner configurations basically formed by two intersecting
wedges is treated in a survey. Symmetrical and unsymmetrical wedge/wedge combinations
are considered including the limits of plate/plate and wedge/plate configurations.
Variations of leading-edge sweep and corner angle are also taken into account.

The present knowledge on the supersonic and hypersonic axial flow in such configu-
rations is summarized. On the basis of experimental investigations the structure of the
flowfield and the pressure and heat transfer distributions aL the surface are analyzed
in detail. The effects of various geometric parameters as well as those of Machnumber
and Reynoldsnu'ber are described.

The status of numerical solutions of the Euler and Navier-Stokes equations for the
problem under consideration is also reviewed. Remarkable theoretical results have been
achieved so far. Some details of the flow structure are still in question and further
experimental and theoretical investigations are suggested.

List of Symbols s Specific entropy

A Source vector u,v,w Components of V in
x,y,z-directions

B State vector

vrvov Components of V in
C Chapman-Rubesin constant r.0,9-directions

F,G,H,S Flux vectors x,y,z Rectangular coordinate system

M Machnumber 0 Corner angle

Pr Molecular Prandtlnumber Leading edge sweep

Prt  Turbulent Prandtlnumber Work done by the total stresses

Re Reynoldsnumber Work done by the viscous stresses

RIR 2  Reattachment lines o Shock angle

SIS 2  Separation lines x Viscous interaction parameter

T Temperature T Angle between shear stress direction
at the wall and the conical direction,

Tr Triple-point positive towards the corner center

y Ratio of specific heats (y-Cp/Cv)V Velocity vector p

Y,Z Conical coordinates (Y=y/x, 6 Wedge angle normal to leading-edge
Zz/x), origin at x-axis Density

7,2 Conical coordinates, origin

at the corner center p Dynamic viscosity

a Speed of sound Total stress -tensor

Specific total energy Viscous stress tensor

p Pressure 9 Static pressure ratio across a shock

Local heat transfer rate at C Total pressure ratio across a shock

the wall

r,, Spherical coordinate system Further notations are explained in the text

*) This paper is gratefully dedicated at the occasion of his -60th birthday on 29 August 1989 to Prof.
Dr.-Ing. Klaus Gersten, who initiated hypersonic research at Institut fUr Strdmungsmechnik of
Technische Universit~t Braunschweig and who built the test facility [413 which is now in operation
since 25 years.
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Subscripts

C Normal to conical ray 1 State upstream of a normal shock

E Embedded shock 2 State downstream of a normal
shock

W State at a swept wedge - Free stream conditions

Wa State at the wall
* Critical conditions

W,u State at an unswept wedge
n-0,1,2,3-Sections of the flowfield

t Total condition (gas brought to according to Fig. 10
rest isentropically)

1. INTRODUCTION

For the design of supersonic and hypersonic lifting vehicles corner flow problems are locally very
important. On such configurations a lot of corners are present as sketched schematically in Fi g.l, e.g.
in the Junctions between wing/body, fin/wing, fin/body, pylon/wing, flap/wing as well as initheintake
duct of airbreathing envines. In these corners a considerable increase of static pressure and heat trans-
fer rate occurs. For in.tance severe interaction heating has been observed during the final flights of the
X-15 research aircraft. Photos of the corresponding damage may be taken from R.D. Neumann [11.

fins

intake - /
~wing

corner flowfield

Fig. 1: Corner flowfields on a supersonic/hypersonic vehicle.

In the survey lecture presented here the different corner flow problems which ocur on supersonic and
hypersonic flight vehicles are characterized briefly. They are related to different corner configurations
which have been treated so far in the literature by means of experimental and theoretical investigations.
It turns out that the symmetrical corner of two intersecting swept wedges may be regarded as the basic
configuration for axial corner flows from which all other corner configurations and the corresponding flow
structures may be deduced by systematic variation of geometric parameters. In the main part of the lecture
the axial flow in symmetrical corner configurations formed by two swept wedges is treated in detail on the
basis of experimental results. Finally theoretical investigations on axial flows in corners are summarized
and compared with experimental data.

shock p4e

'.e' edg Fig. 2: Swept compression corner configuration

on a flat plate.
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2. SURVEY ON CORNER FLOW PROBLEMS

The corner flow problems which occur in the flowfield of a supersonic or hypersonic vehicle are re-
lated to some basic configurations:

2.1 Compression corner (ramp)

The wing/flap junction- according to Fig. 1 is formed by a horizontal wedge on a flat plate as shown
in Fig.2 The wedge axis is parallel to the plane of the plate and the leading-edge is located on the
plate. The corresponding compression corner is basically unswept which leads to a 2D formation of the
flow, but small angles of sweep may also be present, which cause 3D effects. For the case of 2D flow the
flowfield is well known: In invisc," flow from the corner an oblique shock wave emanates which is attached
for small values of the wedge hall-i ele 6 and detached for larger values of 6. In viscous flow this outer
flowfield interacts with the fla, 7a-, ooundary layer which may be laminar or turbulent. Due to the pres-
sure rise flow separations occur, os. to the corner region. In this case the shock wave is split up in
two parts which are related to the s.paration and the reattachment point in the corner. Details may be
taken from M.S. Holden (23, W.L. Hankey, M.S. Holden (3] and T.C. Adamson Jr., A.F. Hessiter (4]. Recently
the 3 effects resulting from a certain sweep of the corner as indicated in Fig. 2 have been investigated
by G.S. Settles, J.J. Perkins and S.M. Bogdonoff [53, G.S. Settles, S.M. Bogdonoff (6] and G.S. Settles,
H.Y. Teng [7]. For small angles of sweep a cylindrical symmetry in the 3D shock/turbulent boundary-layer
interactions was found, whereas for larger angles of sweep the flowfield in the interaction region turned
out to be conical. The boundary between these two flow regimes is basically a phenomenon of inviscid flow
directly related to shock wave detachment. Solutions for this problem on the basis of the time-dependent
Reynolds-averaged Navier-Stokes equations for 3D compressible flow, using the k-c-eddy viscosity turbul-
ence model, have been obtained by C.C. Horstman (8]. They are in good agreement with the experimental data
according to G.S. Settles, H.Y. Teng [7]. The swept compression corner flow problem will not be covered in
this lecture. It has been mentioned here in some detail for the sake of completeness and the reader is
referred to the cited literature.

2.2 Glancing shock wave

Junctions between wing/body and fin/body according to Fig. 1 are related to the basic problem of a
vertical wedge on a flat plate as shown in Fig.3. In this case a glancing shock wave emnating from the
leading-edge of the wedge interferes with the aminar or turbulent boundary layer on the flat plate. The
most simple configuration of this kind is the unswept wedge (or fin or shock generator) with its leading-
edge perpendicular to the flat plate. In this case-the "inviscid" shock wave well away from the flat plate
is plane and everywhere normal to the flat plate. The shock wave causes a pressure increase in flow direc-
tion in the boundary layer flow on the flat plate which may lead to flow separations there depending on
the shock strength. Additional flow separations have been observed on the shock generator surface close to
the corner center. Experimental investigations on such configurations are (among others) due to A. McCabe
[9, C.H. Law [10), D.J. Peake (11], R.H. Korkegi (12], B. Oskam, S.M. Bogdonoff, I.E. Vas (13], II.
Kubota, J.L. Stollery (14], O.S. Dolling, S.M. Bogdonoff [15] and W. McClure, D.S. Dolling (163. Recently
the effects of fin bluntness and-sweep are of particular interest and they have been investigated in dif-
ferent places by D.S. Dolling (17], G.S. Settles, F.K. Lu (18] and N.R. Fomison, J.L. Stollery (19]. The
problem-of a glancing shock wave interacting with a flat plate boundary layer will be treated in detail in
this lecture series. It is also mentioned here for two reasons:

i) The glancing shock wave problem contains a special case which is important also for axial corner
flows in air intake ducts as indicated in Fig. 4. In the intake situation wedge and flat plate
start from leading edges or lips which are mostr located in the same plane perpendicular to the
free stream. The wedge generates a glancing shock wave which interacts with the flat plate flow,
and the "inviscid" flowfield is the same as in the fin situation according to Fig. 3. The
viscous flowfield however is different. In the fin situation a laminar or turbulent boundary
layer without shock wave is present. In the intake situation due to boundary layer displacement
effects a flat plate bow shock wave is formed at the lip and the glancing shock wave interacts
with this weak shock wave as well as with the boundary layer underneath this shock wave. If the
lip of the flat plate in Fig. 4 is moved upstream, the flat plate shock distance in the wedge
region increases-more and more and finally the situation according to Fig. 3 is achieved.

// ~ ~~,~Shck~e a'vic=

t generatng a glacingssho k wave X glacin khc wave

lip

Fig. 3: Wedge configuration on a flate plate Fig. 4: Wedge/plate intake configuration with
generating a glancing shock wave, a glancing shock wave.
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ii) For the glancing shock wave problem some very interesting theoretical approaches do exist, which
might also be applied to the intake situation. The complete Navier-Stokes equations for laminar flow
have been solved numerically by C.M. Hung, R.W. MacCornack [20] and later the same authors (21) ex-
tended their method to turbulent flow. In the equations the Reynolds stress tensor and the Reynolds
heat flux have been added and turbulent closure has been accomplished by application of an eddy vis-
cosity and turbulent Prandtl number turbulence model. In [21] an explicit numerical scheme was used,
whereas D.D. Knight (23) applied a hybrid explicit-implicit numerical algorithm. Many details of the
glancing shock wave problem have been calculated in [21] in good agreement with the experimental data
due to C.H. Law [103, by C.C. Horstman and C.M. Hung [22] in comparison with measurements due to B.
Oskam, S.M. Bogdonoff, I.E. Vas (13] and 0.J. Peake [11] and by 0.0. Knight [23] in agreement-with
data by W. McClure, D.S. Dolling (16].

Thus the glancing shock wave problem is closely related to axial corner flows in air intakes and the-

oretical and experimental results for this problem have to be taken into account.

2.3 Intak- corner flows

The flow in the intake duct of airbteathing engines leads to the problem of axial flow in the corner
formed by two wedges as sketched in Fig. f. In this case two shock waves are generated at the leading-
edges of the wedges which interact in the corlir region. Already in the inviscid outer flow far away from
the corner line a very complicated flow structure turns out: Between the two wedge shocks a corner shock
is formed, and from the line of intersection an embedded shock and a slip surface originate and pass to-
wards the wedge surface and the corner center. Underneath this shock system a rather complicated viscous
flow with primary and secondary vortex separations is found.

Fig 5:j~ Schematic view of the supersonic/
S t,a hypersonic flow in a swept corner con-

*,,ddd shock shp swroc figuration.

If the two ...tersecting wedges have the same geometry a symmetrical flowfield with respect to the
.a/2)-line turns out, and the most important parameters for these corner flows are leading-edge sweep a,
corner angle 0, wedge angle 6 and free stream Machnumber M . If in symmetrical flow the wedge angle of
both wedges tends to-zero, the problem of the axial flow in'the corner between two-flat plates turns out,
which has often been investigated so far. With decreasing wedge angle the wedge shock strength decreases
as well, but in the limit of two intersecting flat plates remains the interference of two weak flat plate
bow shocks due to-the viscous effects, which cause an effective wedge angle by the displacement effects of
the boundary layers. For large distances from the leading-edges of the intersecting flat plates the shock
system is located far away from the-corner line, and in this-case the problem of a compressible boundary
layer f q for a uniform outer flow parallel to the corner turns out.

On ',re other hand, if the wedge angle 6 or-the sweep angle a of the intersecting wedr:s is different
on both sides, an uns metrical flowfield results. In the limit of one wedge angle tending to zero, the
interference prolem , a wedge with a flat plate turns out. The wedge generates a gldnwrg shock tl. ve
which interacts with .e flat plate bow shock and the viscous layer underneath. This problem has already
been sketched in Fig. 4. If the leading-edge of the flat plate moves upstream relative to the lip of the
wedge the flat plate shock disappears and the interference of a glancing shock wave with a flat plate
boundary layer without shock wave according to Fig. 3 turns out.

This discussion shows the central position ot the axial comer' flow problem of two intersecting
wedges. Following here it will be reviewed on the basis of the available experimental and theoretical in-
vestigations.

3. EXPERIMENTAL INVESTIGATIONS ON-AXIAL CORNER FLOWS

3.1 Literature survey

Early investigatiovs of axial corner flow have been carried out for two intersecting flat plates by
P.C. Stainback [24], [251 at Mach numbeis 5 and 8. Pressure distribution and heat transfer measurements
have been performed at the wall in the corner region and considerable increases of both parameters in the
corner region have been foond-as compared with flat plate data. Similar investigations have been carried



out later by P.C. Stainback, L.M. Weinstein t26) for wedge/plate and wedge/wedge configurations at Mach
numbers 8 and 20. The first flo: field measurements in an axial corner are due to A.F. Charwat, L.G.
Redekopp [27). In these investigations .: %hock formation as skttched in Fig. 5 has been found. The tests
have been carried out for two intersecting wedges at supersonic Machnumbers in the range 2.5 S M ; 4.0.
The boundary layers were laminar, and due to the low Machnumbers the boundary layer thickness was rela-
tively small as compared with the shock distance. The investigations were mainly concentrated on the in-
viscid part of the flow field, for which the effects of Machnumber on the formation of the shock system
have been analyzed. The paper (27] contains also some exploratory tests on the effects of corner angle 0
for symmetrical corners and on the shock formation in asymmetrical configurations with different wedge
angles on both sides. Concerning the-viscous part of the flow field some indications for flow separations
in the corner flow field have been found. Similar investigations have been carried out in hypersonic flow
by R.3. Cresci, S.G. Rubin, C.T. Hardo, T.C. Lin [28) at M - 11,2 on a flat plate configuration and by
R.D. Watson, L.M. Weinstein (29] at M= 20 on plate/plate and symmetrical wedge/wedge configurations. It
turned out that the basic features of the flowfield observed in supersonic flow are also present in hyper-
sonic flow, but they-are modified by thick boundary layers and large flow separations.

The 1971 state of knowledge on axial corner flows has-been reviewed by R.H. Korkegi [30]. !'r to that
time almost all experimental work on corner flows involved laminar boundary layers, but the work of P.C.
Stainback, L.M. Weinstein (26] indicated already that there exist some differences in the distributions of
static pressures and heat transfer rates at the wall for laminar ana turbulent flow. Experiments in super-
sonic flow at-high Reynoldsnumbers are due to J.E. West, R.H. Korkegi [31]. It turned out that in laminar
and turbulent flow the same features occur, but the interference region is much smaller in the case of
turbulent boundary layers.

The-problem of asymmetric axial corner flow had already been discussed by A.F. Charwat, L.G. Redekopp
(27] for supersonic flow. Some exploratory experiments have been carried out for laminar flow in wedge/
plate configurations and hypersonic Machnumber by J.R. Cooper, W.L. Uankey [32]. The flow field turned
out to be very different from that sketched in Fig. 5 and only one triple point was found in the outer
inviscid flow regime. On -the flat plate side two flow separations were found in the corner region, but- the
interpretation of the flowfield by the authors gave rise to some doubts. Later R.H. Korkegi [33] used
another review on flow separations to correct the view of the structure-of this flow in the sense, that
secondary separations underneath the primary vortex could clearly be indentified, see also O.3. Peake, M.
Tobak, R.H. Korkegi [34]. A large variety of unsymmetrical configurations has been tested in supersonic
flow by R.K. Nangia; some results are included in (60].

A comprehensive experimental program on axial flow in corners at hypersonic speeds has been carried
out at Institut fUr StrUmungsmechanik of TU Braunschweig. Symmetrical corners formed by unswept wedges
have been investigated by K. Kipke (35] and K. Kipke, D. Hummel [36] at Mach numbers 12 and 16. Wedge
angle 6 and corner angle e have been varied systematically. The flow field has been analyzed by pitot
pressure surveys and flow visua4.zations at the wall and in addition the distributions of pressure and
heat transfer rate at the wall have been measured. Similar experiments have been carried out by W.
Wilenstdt (37], [38] for corner configurations- with swept leading-edges. These measurements showed the
structure of the-flowfield for various sweep angles o and corner angles e. In almost all cases primary and
secondary vortices have been found and the distributions of wall pressures and heat transfer rates could
be correlated with the corresponding flow structure. The maximum values of wall pressure and heat transfer
rate decrease considerably with increasing values of sweep angle o and corner angle e. The measurements
have been carried out for laminar boundary layers. Summaries of the data have been given by D. Hummel
(39], (40]. Similar investigations for turbulent boundary layers are missing up to-now.

Type Gun Tunnel

Maximum driver pressure 500 bar

Working section (size; type) 0 - 0.16 m; open

Machnumber range 8 to 16

Stagnation pressure range 100 to 500 bar

Stagnation temperature range 900 to 1500 K

Typical model length 100m

Reynoldsnumber per mm, (at maximum conditions) 1.5.103 to 3.104

Running time 40 to 300 milliseconds

Usable measuring time 20 milliseconds

Test frequency 30 runs (shots) per day

Balance system Strain-gauge balances (all six components)

Main use of tunnel Basic research, force-, pressure- end
heat-transfer measurements, flow
visualization by oil-dot technique

Tab. I Test parameters of the hypersonic gun tunnel of the Institut fUr StrUmungsmechanik
of Technische Universit~t Braunschweig
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3.2 Testing techniques

Subsequently some of the results of the experimental program at Institut fUr Str mungsmechanik of TO
Braunschweig will be discussed. Therefore the available facility and the testing technique are mentioned
briefly.

The experimental investigations have been carried out in the gun tunnel of the institute, which has
been described originally by K. Gersten, G. Kausche [41). The actual data of this tunnel are compiled in
Tab. 1. The tunnel is mainly operated at a driver pressure of 150 bar. Test gas is the air within the
barreT (length 6 m, inner diameter 50 mm), which usually starts at atmospheric pressure and temperature
and which is compressed by the piston to a stagnation pressure of about 150 bar and a stagnation tem-
perature of about 1300 K. The flow expands through a conical nozzle the throat part of which can be
changed in order to alter the Machnumber. At the beginning-of each run the vacuum chamber at the down-
stream end of the facility starts at a minimum pressure of 0.4 mbar. The total running time at these con-
ditions is about 100 msec.

Within this time margin the measurements- of the aerodynamic quantities are taken. For surface press-
ure and heat transfer measurements 4 channels for the electric signals from the pressure transducers and

r from the thermo-couples are available. Within- the running time of the tunnel on all 4 channels 400 valuesof the signals are taken and stored in the computer. From the time history of these 400 values the time
interval can be determined in which constant aerodynamic parameters and thus steady flow conditions are
present at the model. The corresponding measuring time is about 20 msec and the final measuring value for
each channel is taken as the arithmetic mean value ove' the measuring time.

For atmospheric conditions within the barrel the obtainable Reynoldsnumbers depend on the stagnation

pressure and the free-stream Machnumber. For a stagnation pressure of 150 bar and a characteristic model
length of 100 mm the Reynold--L...qr is Re = 1.4.106 at a Machnumber of M = 8 and Re = 1.7.10

S 
at

M = 16. The corresponding Kn.,'tnrber: ar" Kn - 8.5.10-5 and Kn = 12.10b'which indicates that con-
tTnuum flows are present. In ti.. .' flow test's all runs of the funnel have-been performed for-stagna-
tion pressures of 150 bar. The t. 3tr-im Machnumber has been varied between M - 12.3 and M = 16.0 and
the corresponding Reynoldnumbers, u. ed ':n the model length 1, were Re1 I 5.10Pand- Re1 = 1.7 105.

All corner configurations investigated-so far were symmetrical with respect to the plane through the
apex and the (e/2)-line, see Fig. 5. The corner angles were-o = 600, 90* and 1200, the wedge angles normal
to the leading-edges 6 - 6.30, 8.0

° 
and 10.00, and the sweep angles of the leading-edges o - - 300, 00,

150, 300, 450 and 600. In part I of the program corners between unswept wedges have been considered and
the varied parameters were the Machnumber as well as the wedge angle and the corner angle. In part 11
corners between swept wedges were investigated and the varied parameter was the sweep angle at constant
wedge angle and constant Machnumber. The dimensions of all models were I - 100 mm in free-stream direction
and b - 50 mm perpendicular to it.

The test program for both parts of the investigations may be taken from Tab.2. Pitot pressure
measurements have been carried out in a plane normal to the free-stream close to the model end at x =
0.9.1. In order to check the conicity of the flow field some measurements have also been performed at
x = 0.4.1 and x - 0.6.1. Four pitot probes with an outer diameter of I mm have been traversed
simultaneously in an area of size 30 mm x 30 mm. About 800 runs of the tunnel were necessary to analyse
all details of one flow field. The wall pressure and-heat transfer measurements have-been carried out in a
section at x - 0.9.1. The -heat transfer rates were determined by mans of the transient thin skin
technique as described by D. L. Schultz, T. V. Jones (42J. The measuring device which contained 11
thermo-couples could be adjusted in different positions in the surface of the corner models in -order to
achieve a-dense distribution of measuring points within the section under-consideration.

Port I. 'orners between Port II: Corners between swept
unswept wedges wedges [W. M61enslidt 138)]

IK.Kipke, 0. Hummel 136)1

moo 123 160 ___ 12.3
6 630 800 6 10 80 oo, 6 800

90.oo  0 f.300 0o 3503 50 60of 90 * . . . 60 o o . . a

1200. . • . 0 900 •

o heal flux, oil flow pictures

* pilot pressure (flow field), woll pressure, heal flux, oil flow pictures

Tab. 2: Test program for the measurements in corner coifigurations

For the visualization of the flow at the wall an oil-dot technique has been applied. For this purpose
a fluid had to -be found with relatively low values of viscosity, which does nbt vaporize under vacuum
condition of 0.5 mm Hg pressure and which leads to a distinct displacement of the-droplets within the very
short runn'ng time of 100 isec. Initially- vacuum- oil- was used for this purpose, see K. Kipke, D. Hummel
[36]. Later W. Mbllenst~dt [38] detected a well suited combination of an especially prepared model-surface
by means of an adhesive film and droplets of dibutylester (C6H 0 ) supplied with a red-coloured-powder of
formaldehyd-resin. During the tests the shear stress acts N Nhe droplets and leads to considerable
deformations. Local flow directions and qualitative values for the-shear stress can easily be evaluated
from deformed droplets after the run of-the tunnel.
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Fig. 6: Corner interference shock structure Fig. 7: Spanwise distance of shock intercepts
model according to [44]. in an unswept rectangular corner at M

.3.17 for different wedge angles

3.3 
oel 

according to 
[44].s 

at

3.3.1 Basic ideas for inviscid flow without boundary layer

Consider the cross section through a corner flow field formed by two intersecting wedges as sketched
in F.6. Each of the two wedges produces a bow shock. In the absence of viscous -effects its distance
from tFe wedge surface only depends oh, the free stream Machnumber M and the wedge (half) angle 6. The
flow behind the wedge shock on one side is not parallel to the wedgrsurface on the other side and vice
versa. In other words, the simple wedge flow does not fulfil the condition that in the case of two equal
wedges the bisector must be a stream surface.' These circumstances give rise to the question whether the
boundary-conditions on the wedge surfaces and in the bisector plane can be fulfilled simultaneously for
bow shock waves which are planar up to their line of intersection in the bisector plane. For this purpose
flow models have been developed by F.O. Hains [433 and R.H. Korkegi [44). According to [44] the flow in
the region A (Fig. 6) violates the tangential flcw condition in the bisector plane and a plane shock
wave a is necessary to fulfil this condition. The flow in region B behind this shock wave is parallel
to the-bisector plane but no longer tangential to the wedge surface. In order to correct this F.D. Hains
(43] considered a steady flowi deflecting for small wedge angles 6, whereas R.H. Korkegi (44] applied an-
other plane shock wave b and-due to the subsequent violations of the boundary conditions either in the
bisector plane or on the wedge surface a shock system c , d , e ... according to Fig. 6 is necessary.
The positions of the shock waves can easily be calculated from the shock relations [45]. The result is
shown in Hig. 7 for a corner angle of e - 900 and different wedge angles a at H - 3.17. The lateral
location o e shock intercepts N = 1,2,3... with the plane of symmetry and with thg wedge initially move
inboard, but finally they tend to move outboard and the shock waves intersect. It is concluded, that the
region of interference of the corner of intersecting wedges in an inviscid supersonic-stream extends out-
ward into the flow beyond the planar intersection of the bow waves of the wedges. It turns out that planar
bow shock waves up to their line of intersection are phsically not possible at least for large wedge
angles 6, since the boundary conditions in the bisector plane and on the wedge cannot be fulfilled simul-
taneously. Futher details may be taken from section 4.1.

In real flow the planar wedge shocks interfere by means of a corner shock as sketched in Fig. 5. From
the line of intersection between wedge shock and corner shock an embedded shock and a slip surface eman-
ate. If the flow field in a symmetrical corner configuration with leading edge sweep is considered, the
inviscid flow structure is shown in Fig. 8 according to W. Mdllenst~dt [381. Y = y/x, Z - z/x are conical
cnordinates with the origin at the apex of the corner configuration. For swept leading edges the corner
angle e would be slightly larger than go

0
. In order to achieve a corner angle of e 90

° 
the axes of the

two-wedges have to be turned abouL the X-axis at a small angle c. The inviscid flow is conical with re-
spect o the corner apex at X- Y Z = 0. The corresponding flow structure is shown in conical coor-
dinates. The velocity vector is splitted up in its components parallel and normal to the conical ray and
the projection of the normal component into the Y, Z-plane is shown. In this kind of display the free
stream flow V parallel to the X axis is represented by conical rays towards the center at Y 0 Z = 0 where
the normal component-disappears. The conical shock waves are indicated by double-lines. At a conical shock
the component tangential to the conical ray is unchanocd -whereas the normal component undergoes a jump
which is marked as a kink in the streamlines. Behind a plane corner shock the flow is parallel at a

*certain inclination in the bisector plane. Therefore the normal components of the velocity with respect to
a conical ray with this inclination disappear and the flow in this region is focussed to a point on the
bisector plane apart from the corner. The distance of this focus from the corner center-depends on the
strength of the corner shock. The slip surface through the triple point Tr of the shock system is the
limiting streamline of this flow field-behind the corner shock. The slip surface separates the streamlines
through the corner shock from the ones which passed through the wedge shock. Behind the wedge-shock the

___________________ _________
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(schematic view for plane shock
Y waves) according to [38].

flow is parallel to the wedge surface and directed inboard. In order to meet the slip surface an embedded
shock is necessary. At the slip surface the pressure is constant and across it a jump in entropy takes
place which is equal to the difference-in entropy rise-between streamlines which pass through the corner
shock on one side of the triple point Tr and streamlines which pass through wedge shock and embedded shock
on-the other side of the triple point. At the point of intersection of the slip surfaces from both sides
the flow behind-the corner shock is parallel to the bisector plane, but the flow in the adjacent area is
not. Therefore this flow has to be deflected in order to becomt parallel to the symmetry plane. This can
be achieved either by a steady compression or by a shock wave. In Fig. 8 a corresponding shock wave has
been drawn for simplicity. Finally the flow at the corner center is parallel to the conical corner inter-
section line and the streamlines are focussed with respect to this center. Related to this flow structure
the wall pressure is also drawn schematically in Fig. 8. The pressure level between leading-edge and
embedded shock is governed by the wedge flow, the level between embedded shock and inner (compression or)
shock corresponds to the pressure behind the corner shock and the last pressure rise towards the corner
center is due to the final flow deflection parallel to the corner line which is accompanied by a steep
increase of pressure.

3.3;2 Inviscid outer flow in the presence of-boundary layers

In the real flow with boundary layers at the intersecting wedges the structure of the inviscid outer
flod is in principle the same as in purely inviscid flow. The displacement effect of the boundary layers
is relatively small in supersonic flow, but it becomes very important in hypersonic flow. Due to the dis-
placement effects the wedge shocks as well as the corner shock are located more outboard and their
strengths are larger than in purely inviscid flow. Unfortunately the boundary layer development on the
wedges and in the corner depends nonlinearly on the distance from the corner apex. This means that the
flow is in principle non-conical. The viscous interaction parameter

= e./C' (1)

is a function of the distance from the corner apex. In the vicinity of the apex i reaches large values
even for supersonic flow. Strong viscous interactions take place in this region and the flow is distinctly
non-conical. Moving downstream the viscous interaction parameter reduces more and more. In the experiments
kuf-R.D. Watson, L.M. Weinstein [29] and K. Kipke, D. Hummel [36] the data were taken at a station corres-
ponding to values j = 4 and = 3 respectively and it has been shown that at this distance from -the apex
the flow is fairly conical with respect to a-center which is located slightly upstream of the corner apex.
A conical flowfield of this kind is drawn schematically in Fig. 9. YZ and Y,Z are conical coordinates
with the origin at this center and in the corner. The displacement effect of the boundary layers at the
wedges is taken into account. The two wedge shocks and the corner shock are located more outboard as
compared with-the purely inviscid flow according to Fig. 8, and-the strengths-of these bow shocks are in-
creased. Correspondingly -the point of intersection of the two slip surfaces on the bisector plane is-also
found more outboard. The adaptation of the flow behind the wedge shock to the no-crossflow condition-at
the-slip surface can be achieved by an oblique embedded shock wave. Finally the flow has to be deflected
in order to become parallel to the corner intersection line. This can be achieved by an inner shock as
indicated-in Fig. 9 or by a strong steady compression. This process is slightly different from the purely
inviscid case, since the displacement thickness of the boundary layer is considerably reduced towards the
corner center due to flow- separations, This shape-of the displacement surface leads to an expansion fan in
the inviscid outer flow which interferes with the inner shock or compression in this region. The expected
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distribution of the wall pressure related to this flow structure is also indicated in Fig. 9. Due to the
displacement effects the pressure level should be larger than in the purely inviscid case. In the region
between the embedded shock and the inner compression the pressure increase caused by the embedded shock
might be considerably reduced or even compensated by the expansion due to the shape of the displacement
surface, but finally a steep pressure increase towards the corner center can be expected.

The inviscid outer flowfield is now analyzed-on the basis of the experimental results for a 4 = 30'
swept 0 I 90" rectangular corner at M - 12.8, as shown in Fi_ . The flow is syixmtrical with respect
to the bisector plane. In the left urper half of the diagrami te measured pitot pressure distribution is
drawn and the right lower half of the flowfield is used for interpretation purposes. The pitot pressure
data are given dimensionless as the ratio € = p /p where p = p is the free stream pitot press-
ure in the region 0 . Wedge shock and corner stck ? marked bW a sg 'p increase of pitot pressure p
and the same applies for the embedded shock and the slip surface. Apart from the free stream region 62
the inviscid outer flow is divided in the regions I , 2 and 3 . The state of the flow in these parts
of the flowfield can be analyzed quantitatively using the measured shock positions (which include thv
boundary layer displacement effects) and considering special measurements of the static pressure p1 on
swept wedges which are available as additional information. For the region I behind the wedge shock the
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i R, , s2 R2 02 03 S,

Fig. 10: Pitot pressure isobars and triple point analysis for ths flowfield in a
symmetrical o 300 swept rectangular corer (6 = 8*) at P, = 12.8 accor-ding to [38].
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pitot pressure ratio may be written as

Pt21 Pt21 Ptlo Ptl (2

Pt20 Ptil Pt20 Ptio

The first two factors indicate the ratio of pitot pressure p to total pressure pt at the probe in the
regions I and 0 , which can be expressed by the correspondlhg Mach numbers for y 4 7/5 [45 as

t21 = , 2 7 /2 . 6 1 (3a)

pt2O = 7/2 6 /2 (3b)
Ptl1o + 5 • I(

The free stream Mach number M - II is known a priori. The Mach number M1 can be expressed by the free
stream Mach number M0 and the ;ressre ratio C1 

= 
Pl/PO as

M02(6f1 1) - 5(Q," - 1)(11 = (4)tl(t I + 6)

The pressure p has been- measured separately and pO can be determined-from the measured free stream pitot
pressure pt20 according to [45] as

PO - Pt20 [• 7/2 (5

The last factor in equ. (2) is the-ratio of total pressures at the wedge shock, which can be expressed by

the ratio of the static pressures E, as

. i (6)
Ptio + +6 c

The evaluation of equ. (2) to (6) for the flow according to Fig. 10 leads to C 3,31. The plateau of the
data behind the wedge shock (2.75 :s ; 3.67) is in good agreement with the cllculated value.

Corresponding values for the regions 2 and 3 can-be determined if the pressures

P2 
=  

P3 (7)

are known. P3 can be calculated frm the corner shock angle 
0
C in the bisector plane

0c = tan-' , (8)
xM

where y , z are the coordinates of point S in Fig. 10 in the corner apex fixed coordinate-system and x
is the distance of the measuring plane from the fictitious conical center upstream of the corner apex. ThV
free stream Machnumber component normal to the corner shock is then

MOCs  = MO .- si nl c  , (9 )

and this leads to the pressure ratio

C3.P3 .7MOCS' (10)p0 -1-- = (10)
PO 6

For given p according to equ. (5) the pressures p and p are known. The yet unknown distance x of the
fictitious Pontcal center located upstream of the Eorner 3pex can be determined using the measurd posi-
tion YTr, ZTr of-the triple point Tr and the wedge shock angle oW between the free stream flow M H0 and

_ _
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-l the plane wedge shock

oW  = sn'lv  M02 (I

Finally x. can be written as

1 1

xM YTr tano + ZTr Sin2w cs212

and for an unswept wedge o = 0 yields

x = ZTr cotW (unswept) (12a)

The values for the pitot pressure ratios and ; can be determined from equ. (2) to (6) by replacing c
by the ratios & = p /p and C3 = p3/p. Fr the flow in Fig. 10 the values c =598 and 4 = 4.17 tufA
out. Both are i4 gco& agreemen wit6 th measured data. The pressure ratios at the various sh~cks are

Wedge shock c1  = p1/po 
= 

7.60

Embedded shock 2 = p2/p1  = 2.42

Corner shock E3 = P3/Po = 18.38

Due to equ. (7) the relation between the pressure ratios is

CI " 2 = C3 (12)

The corner shock wave is extremely strong, followed by the wedge shock, and the embedded shock is the
weakest one in the field of the inviscid outer flow. From the pressure ratios { the Machnumbers behind the
shocks can be evaluated for given Nachnumbers upstream of the shocks according to equ. (4). This yields

Free stream % = = 12.76

Region 1 M1 = 8.41

Region 2 M2  7.26
Region 3 M3 = 6.06

The values indicate that in the whole region of the inviscid outer flow high supersonic or hypersonic Mach-
numbers are reached.

Finally the region in the immediate neighbourhood of the triple point Tr will be analyzed. The conic-
al ray from the fictitious conical center towards the triple point Tr is known. In order to find the
streamlines in conical coordinates according to Fig. 9 the Machnumber components normal to the conical
ray 14 (n = 0,1,2,3) have to be determined. Since the tangential component is unchanged through the
shockO, for the normal components the ordinary shock relations [45] hold, and these normal components can
be-evaluated basically from equ. (4) according to W. Mdllenst~dt [38] as

Free stream MOC = 3.99

Region 1 MIC = 2.11

Region 2 V2C = 1.48

Region 3 M3C = 0.45

In the plane normal to the conical ray through the triple point Tr the deflection angle 61 at the wedge
shock can be calculated from Nc and as

za

[ O5(c - 1) 16 + I
tan261  

7 4 c5( 1 )-(6 1,1 (13)

and corresponding formulas are valid for the deflection angles and at the embedded shock and at the
corner shock. The angle % between the Machnumber component Hic %d the embedded shock is

U = sin-
1  

- (14)

Finally the shock -system, which has been calculated in a plane normal to the conical ray through the
triple point Tr, can be transformed in the ?,Z-plane. The result is shown in the right lower half of
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Fig. 10. The shock directions in the vicinity of the triple point Tr are calculated from the measured
data. The agreement with the pitot pressure data is evident. The flow on both sides of the triple point is
also shown with the correct flow deflections at the various shocks. An intuitive view of the flow struct-
ure turns out.

Finally the shock polar diagram can be drawn for the plane normal to the conical ray through the
triple point Tr. For the wedge shock the velocity ratio is 145J

V ( - , (15)

Voc MoO(6C. + 1)

and similar equations hold for the two other shocks. For the vectors V and V at the angle 6 shown in
Fig. I1 the shock polar for the wedge shock as well as the-constant arc Or theiagram can be dtermined.
The-wedge shock angle o in the plane normal to the conical ray can be determined in the usual way. The
shock polar for the embedded shock is also drawn in Fig. 11. The deflection angle 62 leads to the velocity
V behind the embedded shock and the corresponding shock angle according to equ.2(14) can be evaluated
a§o from Fig. 11. Concerning the corner shock the Machnumber component in the plane normal to the conic-
al ray through the triple point Tr is subsonic. Hence the deflection angle 6 in combination with the VnC
shock polar leads to the velocity V3 r behind the corner shock and the corresponding corner shock angle cc
is close to r/2. For the deflection angle yields

1 -62 . 63 (16)

Of , 2C

I Fi. 11 Shock polar diagram for the flow
normal to the conical ray through the
triple point Tr for the flowfield in a
symetrical § - 300 swept rectangular
corner (6 -.8*) at 4 = 12.8 according

/ to [38] (6 ,6 delection angles at
the shocks). 2,3

On both sides of the slip surface the velocity vector components normal to the conical ray through the
tripla point Tr have the same direction, but the magnitude of this component is considerably different.
Taking into account also the velocity component parallel to the conical ray through the triple point Tr,
the velocities at the slip surface-are in the same plane but their magnitude and direction are different.
The slip surface represents a vorticity sheet. Originally at the triple point Tr this sheet is very thin,
but far more inboard it develops like a free shear layer due to viscous effects. Unfortunately the rela-
tively thick pitot probe is not able to give more details on the flow at the slip surface, but the steep
pitot pressure increase between the two regions 2 and 3 is clearly indicated. The entropy-jump across the
slip surface can-be calculated from the total pressures in both regions (45] as

As23 tL13 [nt13 PtlO Pt11

-- = -iln- - In ------ (17)
RPt12 tPtlo Ptll PtI

and the total pressure ratios across-the various shocks can be evaluated in principle from equ. (6) using
the known static pressure ratios ,, C2 and For the-present example in Fig. 10 the result is As23/R =
1.136.

At the lower end of the flow in region 2 the pitot pressures decrease considerably, and this can be
interpreted to be due to-an expansion fan originating from the point of intersection J between the em-
bedded-shock and the boundary layer. The expansion waves-are reflected froi the slip surface and the bi-
sector plane as compression waves and this leads again to a steep increase-of the pitot pressure towards
the corner center. Finally the flow is deflected parallel to the bisector plane and parallel to the wedge
surface in the immediate neighbourhood of the corner by an inner shock or by a strong steady compression
as indicated on the right~hand side of Fig. -10.

At the-end of this analysis of the inviscid outer part of a corner flowfield it has to be born in
mind that the input data were 4 , p p, y, z and y7  z and that all other quantities have been
deduced from the shock relations ThW s cAre of tne fRowfield in the right hand lower half of
Fig. 10 has been calculated on this basis and the agreement with the pitot pressure measurements is quite
remarkable.
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3.4 Boundary layer flow

The outer edge of the boundary layer is indicated in Fig. 10 by a sudden drop of the pitot pressure
towards the wedge which is due to the total pressure loss within the boundary layer. The corresponding
boundary layer thickness is largest in the--region-of the embedded shock.

The flow structure near the wall may be taken from the evaluation of the shear stress p~ttern, ob-
tained from flow visualizations by means of the oil dot technique, according to Fi. 12. The low on the

= 30' swept wedge is parallel to the free stream up to a conical ray A. Upstreaof this oorder the
wedge flow is not influenced by the presence of the second wedge. Downstream of the line A the streamlines
close to-the wall move outboard. The angle i between the streamlines and the conical rays from the corner
apex reduces more and more. At S a conical line with convergence of the streamlines is found which marks
a separation line. At the wall the flow becomes parallel to this conical ray S The crossflow component
of the shear stress disappears at the separation line, but the longitudinal coonent does not. Therefore
a deformation of the oil dots at the separation line in the direction of the conical ray is still present.
The corresponding reattachment of the flow takes place at the conical line R1, which is found very close

a) b) c)
1 2 3 14 a

. Mo o,,d flow

,,,.,,h,,,IJlh / A, o , o

00 26P

-Y 0 0.3 12 03 041 05 7 0,7

Fig. 12: Evaluation of the shear stress pattern
in a symmetrical 4, = 30' swept
rectangular corner (6 = 8) at
M 12.8 according to (383.
aT Pattern of deformed oil dots
bj Qualitative interpretation
c Qu~ntiative evaluation

to the corner. At this line streamline divergence is distinctly marked. In the region between the re-
attachment line R and-the corner the flow is directed towards the corner whereas in the region beyond the
reattachment line R, the flow at the-wall is directed outboard. S and R are related to a vortex which
may be called the p imary vortex. In the outboard flow between R land S lnother conical separation line
S with streamline convergence and another corresponding reattaclment libe R with streamline convergence
c~n be detected. They belong to a secondary vortex underneath the primary vortex.

The shear stress pattern can-be evaluated with respect to the angle 7 between the streamlines at the
wall and the conical direction. The result is also shown in Fig. 12. If the flow is parallel to the conic-
al direction V = 0 turns out. T > 0 means that the flow is directed inboard with respect to the conical
rays and T < 0 indicates the outboard direction of the flow. Using the results for the angle V the flow
nattern can-be transferred into-conical coordinates-as shown in Fig. 10. The influence border A is located
far outboard and it is not shown in the figure. Within the inboard flow between S, and R the primary
vortex is formed and underneath the secondary vortex is located between S and R It shoulJ be mentioned
that in three-dimensional flow the separating stream surface-and the attahing stream surface are differ-
ent. Therefore the flow separations in three-dimensional flow take the form of vortices which are fed from
outside with vorticity rather than closed separation bubbles which occur in two-dimensional flow. Primary
vortex and secondary vortex show the opposit sense of rotation. Flow separations of this kind are wel
known, e.g. from the upper surface of slender delta wings as described by 0. Humel [461; see also D.0.
Peake, M. Tobak, R.IH. Korkegi (34).

The occurrence of boundary layer separation is due to the pressure gradient caused by the embedded
shock wave. Nevertheless it is-an interesting result that the influence border A (in the example according
to Figs. 10 and 12 situated at 7 - 0.66) is located far more outboard than the line of impingement J of
the embedded shock and the boundary layer (situated at 7 = 0.14). This phenomenon is well known from
two-dimensional flows with shock-induced pressure gradients as described by L. Lees, B.L. Reeves (47],
H.S. Holden 12J and A.H. Shapiro (48]. If an external shock causes flow separation in a compressible

,,,,,,,,,,,,,,,,,,,,,,,,,-
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laminar boundary layer flow as sketched in Fig. 13, the boundary layer flow upstream of the shock is
curved due to the displacement of the boundary aryer and the separated region. In the supersonic part of
the boundary layer and the adjacent inviscid outer flow a compression takes place which causes an increase
of the static pressure at the wall upstream of tha- shock and this additional pressure rise finally leads
to a separation point which is located far upstream of the shock impingement point. The displacement of
the inviscid outer flow is largest in the region of the separation bubble at the shock impingement point.
Behind the shock wave the separation bubble closes and the viscous displacement is considerably reduced.
Therefore the inviscid outer flow passes an expansion and in the first instance the pressure rise due to
the shock wave cannot be detected at the wall. Finally in the region of the reattachment point the flow is

Fig. 13: Schock-induced boundary-layer separa-

0_ tion in supersonic flow according to%[473.

again turned parallel to the wall. This causes a compression in the inviscid outer flow-which leads to the
increase of static pressure at the wall in this region. This behaviour of the flow is in principle the
same for two-dimensional and three-dimensional flow; the differences concerning the separating and re-
attaching stream surfaces have already been mentioned. The boundary layer is very sensitive with respect
to pressure gradients caused by external shock waves and it is the mechanism described here which smeares
the effects of-the pressure jump at the shock to large areas upstream and downstream of the-shock.

3.5 Surface pressure distribution

Within the series of results presented later the experimental data for the configuration discussed so
far are- colle:ted in Fig. 16. From these data the static pressure as well as the heat transfer distribu-
tion may be tdken.

The pressure distribution at the wall is very similar to that observed-in two-dimensional flow shown
in Fig. 13. Far away from-the-corner the pressure starts at the value of a_ - 300 swept wedge and in-
creases inboards due to the displacement caused by the flow separation far more inwards. The wall pressure
reaches a relative maximum in the vicinity of the separation point S . In the region of the primary vortex
at the impingement -point of the embedded shock a flat minimum of ti wall pressure is found, which might
be related to the convex curvature of the displacement surface in this region which causes an expansion.
The final pressure rise towards the corner center takes place-in the region of the reattachment point R1
where the inviscid-outer flow is concave which leads to a steep pressure rise. By these effects the pres-
sure jump of the embedded shock is smeared out: Separation occurs far outboard from the corner and the
shock induced pressure rise is delayed by an expansion to the region of the reattachment point R. It
might be that the reduction of.the wall pressure in the separated flow region is also related to the flow
separations as discussed by K. Kipke, D. Hummel [36J and R.H. Korkegi £333. The flat minimum of static
pressure is located -underneath the primary vortex which could have caused the pressure reductions or at
least an addition to it. Unfortunately the consequences of the expansion effect in the outer flow and the
vortex effect in the separated viscous flow on the pressure distribution cannot be separated in the ex-
perimental results.

3.6 Surface heat transfer distribution

The measured distribution of the local heat transfer rate at the wall is also sLown in Fig. 16. The
maximum values are reached in the vicinity of the resttachment point R . From the structure of the
flowfield, discussed so far, it is obvious that- in this region stream jrfaces reach the wall which
originate from the outer part of the boundary layer. On-these stream surfaces the original kinetic energy
is-large and tberfore high temperatures qre reached in the neighbourhood of the reattachment point R ..The
maximum value Q,;,, related to -the value qW,u at an unswept wedg6 with the same-wedge angle 6 is qa, V.
=6.

According to W. Mdllcnst~dt [38) the heat transfer rate can be estimated by means of Crocco's
analysis 149J for laminar boundary layers. If the flow proporties at the outer edge-of the boundary layer
are velocity V1 and temperature T,, the temperature distribution in a flat plate boundary layer in
compressible flow is according to E. van Driest [50]

T (n n I \ I \
f f f 3 (18)

i 
Waxx
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In this equation n is the coordinate normal to the flate plate. If the flow properties at the outer edge
of the boundary layer as well as the temperature ratio T /T are constant, the second relation in equ.
(18) holds. If the local boundary layer thickness 6,(x) iOinroduced, the variable n//i can be expressed
as

n n 6B(X) n

and since 6 (x) ,, rx the second expression in equ. (19) is valid and the temperature distribution can be
written in 8 he form of the third relation in equ. (18). The temperature gradient at the wall may be
calculated from equ. (18) as

(20)
jTi anJla Wa -6B

It is now assumed that these relations for flat plate laminar boundary layers are also applicable for the
laminar flow in the corner flow field. If equ. (20) is applied for an unswept wedge (subscript W, u) the
constant Uf3PWa can bL expressed by the corresponding temperature gradient and from equ. (20) yields

~ ~ 1T/n3~ ~(21)
qw'u [ZT/3n]w,u,Wa 6B

This simple result means that the heat- transfer rate is proportional to the reciprocal value of the local
boundary layer thickness. Thin boundary layers cause high heat transfer rates and vice-versa. The boundary
layer thickness can be evaluated from the pitot pressure measurements. Typical results are plotted in
Fig. 14 for the a - 301 swept rectangular corner configuration. Since not every pitot pressure profile
ends at a constant plateau outside the boundary layer, the boundary layer thickness has been taken as the
distance of the inflection point of the pitot pressure profile from the wall for the swept and the unsept
case as indicated in Fig. 14a. In the presence of an embedded vortex a corresponding vortex displacement
thickness 6 has been separated from the pitot pressure profile as shown in Fig. 14b, an it has been
assumed that the heat transfer in such a flow is governed by the wedge flow part of the pitot pressure
profile only. An evaluation of equ. (21) for the o - 30* swept rectangular corner configuration is shown
in Fig. 14c and compared with the measuied data. The agreement between the estimation and the measurements
is remarkable and the same applies to all other configurations investigated by W. MHllenstdt [38]. Some
deviations are found in the-region inboard of the reattachment line R and underneath the primary vortex,
which are due to the simplicity of the approximation. lhe variation V f the flow properties at the outer
edge of the boundary layer has not been taken into account and the-effect of a vortex on the heat transfer
rate has been omitted. Fevertheless the approximation according to equ. (21) leads to the correct value
and position of the maximum heat transfer rate.

0) b)

P

3

2

0025 2 0050.0 2 Oc

Fig. 14: Estimati-n of -the surface heat trans-
ci fer dristributuion through equ. (21)

for the symmetrical a = 300 swept rec-
o-, tangular corner (a 8 ) at M = 12.8
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b) Pitot pressure distribution with

/ vortex
c) Distlibution of-surface heat
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3.7 Variation of geometric parameters

3.7.1 Effect of leading-edge sweep

The Figs. 15 to 18 show a series of experimental results in which the leading-edge sweep angle a has
been varied between $ - -30* and o - 460. With increasing sweep aqle a the pitot pressure level in the
corner region reduces, all shocks are weakened and the whole shock system moves slightly inboard as
indicated by the partial diagrams a) in Figs. 15 to 18. For unswept wedges, Fig. 16a, the wedge shock is
parallel to the V-axis. However,- for swept wedges, Figs. 15a, 17a, 18a, the wedge shock is inclined
against the ?-axis since the distance of the wedge shock from the wedge changes in V-direction due to the
increased or reduced distance between the leading-edge and the measuring plane depending on the sweepangle. With increasing sweep angle the slip-surfaces meet closer to the corner center and the embedded
shock impinges more and more normally on the viscous layer.

According to the partial diagrams in Figs. 15-to 18 for small sweep angles 1.1 S .300 the maximum wall
pressure in tne -corner reaches about 4 times the swept wedge value. The maximum wall pressure -decreasesconsiderably with increasing sweep angle a and the-width of the corresponding plateau is also reduced.
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The partial olagrams c) In FIgs. 15 to 18 show that the maximum heat flux In the vicinity of the
reattachemnent line R is highest for unswept corners, for which the maximum heat transfer rate Is 10 times
as large as for the 1unswept wedge. With increasing sweep angle a the maximum local heat transfer rate Is
consloerably reduced. Concerning Fig. 16c it has be noted that for a 00 a second heat transfer maximum
has been measured Underneath the primary vortex, which has not been found for other sweep angles a, but
which is in agreement with other investigations on unswept corner (293, (303, (333. This matter Is not
fully understood, but the flow separation might be strongest for * 0° causing the additional heat
trajisfer In this region.

According to the partial diagrams d) In Figs. 15 to 18 the influence border A is located at Itsoutermost position at Y 0.7 for unswept wedges. The corner shock system is located at 0.2. This
means that the interference effcts between the two wedges extend through the boundary layer further
outwards than the direct effect of the supersonic shock system. 6ith increasing sweep angle a the corner
effect reduces considerably and the influence border moves inwards. Correspondingly the strengths of the
primary vortices and of the secondary vortices within the viscous layer are reduced and for large sweepThangles, Fig. 18d, the secondary separation disappears. The whole vortex system moves inwards with
increasing sweep angle o.
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3.7.2 Effect of corner angle

In Part I of the testprgram according to Tab. 2 the corner angle o has been varied systematically

between 0 = 600 and o 0 1200 forcorners between unswept wedges. The results have been published by K.

Kipke, D. Hummel 36]. In the course of the investigations of W. H6lenst~dt 38] the corner angle o has

also been varied for corners between swept wedges. Examples of this kind are shown in Figs. 19 to 21 and

discussed- subsequently.

The partial diagrams a) ndcate that the pitot pressure level in the corner region is considerably

rduced for incrasing corner angle e. The shock system mves inboard nd all shocks weaken. The

impingement angle between the embedded shock and the outer edge of the boundary layer Is very flat fr

=600, but its vaue ncrasesrapidly with ncrasng corner angle.

Accordng to the partial diagrams b) in Figs. 19 to 21, at small corner angles a plateau of high wall

pressures in the Inner part of the corner exists. With ncrasng corner angle 0 this pressure plateau
disappears and the maximum wall pressure values are considerably reduced. This means that the pressure

gradients are smller and therefore the flow separations are weakened. The partial diagrams d) in Fis. 19

to 21 indicate weaker flow separations with increasing corner angle, and for 1200 the secondary

separation disappears at all. Corresponding to the inboard vemnt of the shock system with increasing

corner angle the corner effects the 
he viscous layer decrease fonsiderablyinwidth. The influenceborder

A as well as theseparation lines Si , S2 and 
b)reatachnt lines R s, inwards with increasing

corner angl.

In Prt ofthe estrogam ccoringto ab.2 th conerange e as eenvared ssteatiall
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The partial diagrams c) in Figs. 19 to 21 show the effect of the corner-angle on the heat transfor

rates. Since the position of maximum heat flux is correlated with the reattachnent line R , the- region of
xlmm het tansfrmoves inboardan th xmmvleaereuecosdabyw h h esngonr

angle.

3.7.3 Reduction of maximum values for wall pressures and heat transfer

In the course of the experimental investigations of K. Kipke, D. Hummel (36] and 14. Wdllenst~dt (37,
383 reductions of the maximum values for static wall pressure and heat transfer rate due to variations of
corner angle e and of leading-edge sweep a have been found. The possible reductions of these maxim
values by variations of the-two governing parameters are summarized subsequently.

Fig. 22 shows a schematic diagram of the pressure distribution along the wall in a corner
configuration. 'The maximum value in the corner center is p and far away from the corner the undisturbed
value for the swept wedge Pu is reached. In the lower par"L93f Fig. 22 the wall pressures are based on the
wall pressure of an unswep wedge p,. In order to be able to show the results in this manner, some
additional pressure measurements on- 4W't and unswept wedges far away from the corner have been carried
out. The measured pressure ratio p /p1 u is plotted as a function of the sweep angle a. The-well known
reduction of pu with increasing a ir i# out. The ratio p / Pu has also been calculated from the shockrelations usinO the measured shock positions and given ie Fi 22 as black dots. The agreement with the
directly measured data is goof. Thi diagram in Fig. 2 2 shows the maximum wall pressure p / p as
functions of the sweep angle for different corner angles c. Both paramters have a big iafl.engl The
highest values are found for unswept wedges, a 00, and with increasing sweep angle a considerable

reduction is achieved. On the other hand the maximum wall pressure increases very much with decreasing
corner angle . In an unswept 90

0
tcorner p is 4 times as high as in a 60°-swept 90-corner. If the

corner angle is reduced from 90
° 
to 600 th4edges have to-be 45°-swept to obtain the same maximum wall

pressure as in the unswept 9O&-corner. Small values of the maximum wall pressure are achieved for combi-
nations of high sweep angles and large corner angles. t

rae.Snetepsto fmxmu etfu screae ihte etahetln h-eino
maiu ettase oe nor n h aiu ale r eue osdrbywt cesncre
anle

3.. euto fmxmmvle orwllrsue n ettase
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Finally Fig. 23 shows the maximum heat transfer rate as functions of the sweep angle o for different
corner angles -0.Inthe diagram the maximum heat transfer rate is based on the value for an unswept wedge.
Measurements for swept wedges in the absence of a corner are not available. The maximum heat transfer rate
decreases with Increasing sweep angle and it increases with decreasing corner angle. In an unswept
60°-corner the maximum heat transfer rate is 14 times as high as for an unswept wedge. For 90

0
-corners the

maximum heat transfer rate can be reduced to about 40% by applying a sweep angle of e = 600. If the corner
angle is reduced from 900 to 60* the wedges have to be 45°-swept to obtain the same maximum heat transfer
rate as in the unswept 90°-corner. Small values of the maximum heat transfer rate are achieved for
combinations of high-sweep angles and large corner angles.

3.7.4 Effects of wedge angle

Up to now symmetric corner configurations consisting of two intersecting wedges with the same wedge
atiqle 6 were considered at constant Machnumber. Systematic variations of the wedge angle have been carried
out to some extend by K. Kipke, 0. Hunmiel (36] -for unswept 900 corners. Single symmetrical wedge/wedge
configurations have been investigated by A.F. Charwat, L.G. Redekopp (27], J.E. West, R.H. Korkegi (31]
and R.D. Watson, L.M. Weinstein (293. Variations of the wedge angle for swept wedges and 0 t 900 are
missing. Configuratlonswlth two intersecting flat plates have also to be considered here because they
form the limiting case for 6 + 0. Investigations of this kind are due to P.C. Stainback (243, (25], P.C.
Stainback, L.M. Weinstein (26] and H.J. Schepers [51]. For decreasing wedge angle the wedge shock angle o
as well as the corner shock angle aC decrease as well, and the corresponding shocks are weekend. In thv
limiting case 6 + 0 rather weak bow shocks remain at the intersecting flat plates. They still cause an
increase of static pressure and of local heat transfer rate at the wall towards the corner center and from
their distributions some indications support the view that also flow separations are present in this
limiting case. Flowfield investigations in symmetrical corners with small wedge angles or for flat plate
configurations are missing.

3.7.5 Unsymmetric corner flows

Only a few investigations on unsymmetric corner configurations do exist. A.F. Charwat, L.G. Redekopp
[27) published the first results for corner configurations with a base wedge 6 = 12.20 and three
inferferece wedges 6 3.50/7.50/12.20 in supersonic flow. The resulting shock fomation is shown in
Fig. 24. The shock w~ve at the base- wedge 6 remains always in the same position o. With decreasing
wedge angle of the interference wedge 6 th wedge shock angle a decreases as wA', but due to the
different origins of the corner apex thd interference wedge shock'%oves up. The shock pattern becomes
unsymmetric as well and for all measured cases a corner -shock wave and two triple points Tr have been
found. On the side of the interference wedge the embedded shock moves inboard- and shifts into line with
the two-dimensional oblique shock of the base wedge as 6 is decreased. On the base-wedge side the
location-of the shock-surface intersection point remains fixid. In this region the flow stricture is very
complicated and not yet fully understood. The pressure distribution on the base wedge according to (27) is
shown in Fig. 25. A considerable reduction of the peak pressures with decreasing wedge angles of the
interference wedge turns out. No data are available for the interference-wedge side. Theses experiments
have been carried out in supersonic flow with relatively thin boundary layers. Although flow visuali-
zations indicated flow separations within the viscous layer a detailed analysis of the corresponding flow
pattern was not possible. Other investigations -on- unsymmetric-corner -configurations -In- supersonic flow-may
be taken from (60].

Another unsymmetric corner configuration has been investigated by J.R. Cooper, W.L. Hankey (32]. A
6 = 15.00 base wedge formed a rectangular corner with a flat plate. Compared with the configuration of
A.F. Charwat, L.G. Redekopp (273 this configuration forms the limiting case 6 + 0. Concerning the
Inviscid outer flow the interference of a very strong wedge bow shock and a weak flat plate bow shock
takes place and in this case only one triple point Tr has been fouiid. The loss of a triple point for
6 1 -0 is not fully understood. The investigations have been carried out for a free stream Machnumber
Ml_= 12.5. The viscous layer was relatively thick and some details of their structure could be detected.

z

' 101 
'5I'~ d t 0

// 

- /
0.0 _ .........

5 i ' : nlefer tnce

J. ; 

Y I6',7.s'I

Y (6,.12 2*1

Fig. 23: Maximum heat transfer rate as Fig. 24: Shock formation in unsymnetric corner
function of corner angle anTaweep configurations with different wedge
angle 0 in syoaftricdl corner-configu- angles (6k-12.2*

,  
6i-3.5 °/7.5*/12.2 

°)

rations (6 - 8 
°

) at H 12.8 (37]. at M3.1 according'to (27].

II



5-21

04,

Fig. 25: Pressure distributions on the base
0-wedge (6 =12.2') of unsyriietric corner

Is 7S.. configurMtions with different inter-
1 1ference wedge angles (6 =3.5°/7 50/

12.2) at M.=3.17 accordin to [27).

Two separation lines and two reattachment lines-have been found and they are Interpreted to belong to two
flow separations which follow each other in the flow towards the corner center. This view of the viscous
flosi gave rise to some doubts. K. -Kipke 1353 and K. Kipke, D. Hummel (36) Were the first to explain these
flow separations as primary and secondary separations which are well known from delta wings (463, and
later R.H. Korkegi (33) and W. MUllenstUdt (37), (38) used this interpretation as well. The-paper of J.R.
Cooper, W.L. Hankey (323 is mainly concentrated on the flow on the flat plate side and the viedge is
considered only as a shock generator. No information about the flow behaviour-on the wedge side of the
configuration is available.

This section shows that the hypersonic axial flow in unsynmetric corner configuraticr is not yet
understood in details. Therefore an extension of the research program (see Tab. 2) of -the Institut fUr
Stedmungsmechanik at TU Braunschweig is. presently carried out. In this new research program systematic
experiments are performed for unsymmetric corner configurations, which contain the well known symmetric
configurations (-36], (38] as well as the limiting case of the wedge/plate -combination. Unsymmetric flows
are generated by-different wedge angles 6 and by different sweep angles,@ on both sides as well as by com-
binations of both-geometric parameters.

3.8 Effects of Machnumber and Reynoldsnuiqber

3.8.1 Viscous interaction parameter

For the axial corner flows under consideration the most important parameters governing the flow are
the constant free stream Hachnumber M. and the Reynoldsnumber ex. - p. U. x/i., which is a linear
function of the distance x from the corner apex, but which depends also on the free stream conditions.
Hence the viscous interaction parameter for laminar flow (for deritation see e.g. W.D. Hayes, R.F. Prob-
stein (52), J.L. Stollery (53)

M
= 
3

(22)
with the Chapman-Rubesin constant R x.

UwNa ' PWa ( 3c - (23)
IA. -p.

varies downstream. In the neighbourhood of the corner apex or the wedge leading-edge the viscous
interaction parameter-is very large and strong interactions between the viscous flow-near the wall and the
inviscid outer flow are present. Far more downstream the viscous interaction parameter R reduces more and
more and only weak interactions of the two parts of the flowfield are observed. Measured pressure
distributions p/p. in laminar flow indicate that the strong and weak interaction regions meet at i = 3.0.

At hypersonic Machnumbers the transition Reynoldsnumbers are very high so that strong turbulent
viscous interactions are unlikely to occur. Nevertheless weak interactions have to be considered in the
turbulent flow region and the corresponding turbulent viscous interaction parameter is according to J.L.
Stollery [533

.9M 
5 

/ (i . (24)

For all corner configurations, considered here, the inviscid flow would be conical, since the
boundary conditions are conical. The flow including the viscous layer is principally non-conical. In the
strong interaction region-the pressure relation reads as

P- KI() • (strong interaction) (25)
P,
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(with K as a constant) and this indicates that tile flow cannot be conical there. Far more downstream,
however, in the weak interaction region the pressure relation is

p I + K2(y) • (weak interaction) (26)

(with another constant K ). For small values of R the pressure distribution will be constant, p/p.m 1,
and this means that the low is conical. For all measurements in supersonic flow the viscous interaction
parameter is indeed very small. Therfore all theses experiments have been carried out for weak interaction
and conical flow has been found. In such tests, see e.g. A.F. Charwat, L.G. Redekopp (27], the flow is
governed by the inviscid conical outer flow,- and the boundary layers turned out to be very thin,
indicating only weak interactions. In the hypersonic experiments of R.D. Watson, L.M. Weinstein (293 the
measurements were taken at R - 4.0 which is close to the border between strong and weak interaction, and
the flow was conical there. The same is valid for the experiments of K.Kipke, D. Hummel (36] and W.
Mdllenst~dt (373, for which K. Kipke (35] determined R - 3.0, which is the border value. Some tests at
different stations x/l, see Figs. 15-21 and (36], (38], led to the conclusion that the flow at the
measuring station is fairly conical with respect to a fictitious corner apex which is located slightly
iipstream of the geometric one. This fact has been taken into account during the flowfield analysis in
section 3.3.2.

In most experiments the flow at a corner configuration is analysed at a certain station x and the
free stream Machnumber M as well as the Reynoldsnumber Re are varied. In the case of weak interaction a
variation of Machnumber at constant Reynoldsnumber inflences primarily the properties of the outerinviscid flowfield. The boundary layer develops for the conditions prescribed by this outer flowfield and

again a Machnumber effect may occur in the compressible boundary layer. On the other hand a variation of
Reynoldsnumber at constant Machnumber for weak interaction has no significant effect on the inviscid outer
flow, but the properties of the boundary layer may be strongly influenced by Reynoldsnumber . Subsequently
effects of Machnumber and Reynoldsnumber are discussed for weak interaction.

3.8.2 Effects of Machnumber

The shock wave structure in the inviscid outer flowfield of the interference region is strongly
influenced by Machnumber. A-typical result for supersonic flow taken from A.F. Charwat, L.G. Redekopp (273
is shown in Li. 26 At the left hand side the embedded shocks have been extrapolated to the wedge surface
at the point of mximum slope of the wall-pressure distribution. The general features of the flowfield are
unchanged. The entire interference region moves closer to the corner as the Machnumber increases. Similar
results have-been obtained by K. Kipke, D. Hummel (363 for hypersonic flow and weak interaction. Fig. 27
summarizes experimental data on the dependence of the maximum pressure in the neighbourhood of the corner
center from the Machnumber. The maximum pressure increases considerably with increasing Machnumber. The
same applies for the single two-shock flow model which assumes the intersection of two plane wedge shocks
and which disregards the violation of the boundary conditions. The Machnumber M, behind the wedge shock
can be calculated (45] from the frea stream Machnumber M. and the shock angle . The pressure ratio

pmax/pW is then evaluated for y= 7/5 [45] from

Pmax 7M21 sin .* (27)
PW 6
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Fig._26: Effect of Machnumber on the shock wave Fig. 27- Effect of Machnumber on the maximum
structure in a symmetrical, unswept, pressure in an unswept, rectangular
rectangular corner (6 12.2 °) at corner (6=10) at according to [363.
supersonic speed accordin to C271.
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Fig. 28: Effect of Machnumber on the maximum Fig. 29: Shock wave structure for laminar and
heat transfer rate in an unswept turbulent boundary layers in a sym-
rectangular corner of two intersecting metrical unswept rectangular corner
flat plates (6-0") at according to (6-9.50) at 1-3.0 according to [313.
[293.

and in the limit M. - -with M.. 6 - I yields

l Pmax 2Y
... .7. (28)

The strong increase of the maximum pressure is thus a characteristic feature of -the inviscid outerflowfild.

The heat transfer distribution is principally the same for supersonic and hypersonic flow as compared
by R.H. Korkegi (303. R.D. Watson, L.M. Weinstein r29] have looked through the available experimental data
for unswept 900 corneil configurations. Their result for the peak heat transfer rate, based on the flat
plate value (FP), as function of Machnumber is shown in Fig. 28. All these data are from the weak
interaction region (R < 4.0). The peak heat transfer rate increases considerably as the Machnumberincreases.

3.8.3 Effects of Reynoldsnumber

Almost all experimental investigations on -axial flow -in -corners were concerned with laminar flow. In
this case strong flow separations occurred far outboard from the corner center and even secondary
separations underneath the primary vortex were found. Only a few experimental data are available for
turbulent boundary layers from O.E. West, R.H. Korkegi [313 and R. H. Korkegi [332. These investigations
have been-carried out for a symmetric, unswept rectangular corner configuration of two intersecting 9.50
wedges at a Machnumber M - 3. For comparisons one flowfield has been measured at Re - 3.9 - 10 , for
which the boundary layer-'was laminar. The result is shown in Fig. 29. For turbulent boundary layers
extensive tests for Reynoldsnumbers 3.0 to 37 • 106 showed no Iefe-fEC of Reynoldsnumber on the shock
formation. The flow structure is basically the same as in laminar flow. The whole interference shock
system is located slightly more inboard in the turbulent case. Although very low values of R are present
and -all results represent "weak" interaction, the displacement of the outer shock system due to the
different boundary layer formation is distinctly marked. The surprising result is the different behaviour
of the flow with respect to separations. For laminar flow a very early flow separation takes place marked
by the oil accumulation line at 7 = 0.87. Hence a large primary vortex is formed which causes a large
displacement in the flo and which moves the whole interference shock system outboard. The turbulent
boundary layer flow is not very sensitive to pressure gradients. Flow separation takes place far more
inboard and very close to the embedded shock. Therefore the flow separations are smaller in the case of
turbulent boundary layer flow and the corresponding outboard displacement of the interference shock system
is weaker. The paper of J.E. West, fi.H. Korkegi (31] contains some very nice flow visualizations which
show the transition from laminar to turbulent boundary layer and the corresponding inboard displacement of
the primary separation line SI.

Surface pressure distributions taken from [313 are shown in Fig. 30. For laminar boundary layer the
pressure rise starts far- outboard at the separation point and the cU mrpession in the flow is distinctly
marked. The steep pressure increase caused by the embedded shock is delayed through the expansion around
the primary vortex and finally the high plateau is reached in the reattachme:it zone. For turbulent boun-
dary layers the pressure rise from the wedge value starts far more inboard and it is much steeper-than for
the laminar case. This indicates a strong compression or a lambda-formation of the embedded shock near the
separation line. The second pressure rise is as in the laminar case associated with the flow impingement
in the region of the reattachment line. The curve for a transitional section follows in the outer part the
results for turbulent boundary layer and switches inboard towards the data for laminar boundary layer,
since the inner portion of the flowfield-hias already experienced laminar boundary layer separation.

The heat transfer distribution has not been measured by-2 .E. West, R.H. Korkegi [31]. A few data are
available from-P.C. Stainback, L.M. Weinstein [263. They indicate that in corner configurations the heat
transfer rate in the vicinity of the reattachment point is considerably reduced for turbulent boundary
layers as-compared with the laminar case. Further investigations on this subject are needed.
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ti.Fig. 30: Surface pressure distribution for
different Reynoldsnumbers in a
symmetrical, unswept, rectangular
corner (6=9.5

°
) at M= 3.0 according to

,Ircr (31]. Theory (numercal solution of
...._______ _ .......__ __ _ the full Navier-Stokes equations) due

, 2 o ,' , 0 ;, 1, to [72].

4. 1HEORETICAL INVESTIGATIONS ON AXIAL CORNER FLOWS AND COMPARISON WITH EXPERIMENTAL DATA

Up to 1970 theoretical work descriptive of supersonic flow in an axial corner was virtually
nonexistent. Some early studies of the inviscid outer flowfield as well as of the boundart layer flow
introduced assumptions and boundary conditions which were not representative of the supersonic interaction
as found experimentally. In the last 20 years, however, theoretical modeling of the real axial corner flow
has been achieved successfully. The approach was quite conventional, starting with inviscid flow theories
followed by takinig into account viscous effects up to the solution of simplified or the full Navier-Stokes
equations. Concerning the region of hypersonic flows the theory is well established only for perfect gas
properties. It will be outlined and reviewed subsequently up to this limit. Real gas effect; such as
dissociation and ionization-will not be taken into account nd the upstrem end of the strong interaction
region with slip flow and free molecular flow will also not be covered. The review, following here,
comprises theoretical work on the strong and weak interaction regions in axial corner flows for a perfect
gas.

4.1. Inviscid flow

The linearized solution for supersonic flow near the intersection of two quarter-infinite wedges was
obtained by R.M. Snow (54]. Later F.D. Hains (43] showed that at least for small wedge angles 6 and not
too small corner angles o an exact solution exists, which allows the two wedge shocks to intersect as
plane shock waves. For this purpose a single-embedded shock wave is necessary on each side. These shocks
are followed-by conical expansions which satisfy the boundary conditions at the wedge surfaces and which
provide the conditions at the border of the inner elliptic region. J. Wallace, J.H. Clarke [553 found the
sdme result on the basis of a second-order solution of the potential equation. Discontinuities in the
potential and square-root singularities in the velocities are removed by a proper introduction of the
bow shocks into the flowfield, which leads to the same flow structure as proposed by F.D. Mains [43]. Due
to the conditions at the shocks the solution with direct intcisection of two plane shock waves may be
called a regular reflection configuration, whereas the other-possible solution according to A.F. Charwat,
L.G. Redekopp [27] may be considered as a Mach disk configuration. For some time both solutions were
thought to exclude each other, but F. Marconi (56] has shown that in symmetrical corners for low wedge
angles the regular reflection configuration-and for large wedge-angles the Mach disk configuration of the
shocks-do exist. T.P. Goebel [57] analyzed the Mach disk shock configuration found in the experiments of
A.F. Charwat, L.G. Redekopp (27), by means of an iteration technique to fulfil the shock relations and the
compatibility conditions for the slip surface. As results the positions of -the triple point Tr and the
slope of the slip surfaces turned out and it was found that the slip surfaces meet at a certain distance
from the corner center unlike the data of A.F. Charwat, L.G. Redekopp [27] but in agreement with the
experiments of R.D. Watson, L.M Weinstein (29]. A unique solution for the embedded shock could not be
given and so far no adequate method of predicting the inviscid flow structure for large wedge angles-6 was
available.

The first numerical- solution of the Euler equations for axial corner flows has-been carried out by P.
Kutler [58]. According to this-method examples have been calculated-by V.Shankar, D. Anderson, P. Kutler
[59] and D.A. Anderson, R.K. Nangia (60] and compared with experimental data. The Euler equations may be
written in conservation form-as

, 0 (29)
ax By 3z

where

S pU
2 
+ kp; G =puv I; I puw

puv pV
2 
+ kp jPvw

puw lpVW pw
5 
+ kp

and where k = (y - )/2y, y beeing the ratio of specific heats. All quantities are dimensionless. Pressure
and density are based on freestream -stagnation conditions and the velocities on the maximum adiabatic
velocity. The system of-equations is made complete by the energy equation

p p(l - u2 - v
2 
--w2). (30)

I|S
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These equations are transformed into-nonorthogonal conical coordinates. In the y-direction the lower boun-
dary is the interference wedge surface, where the tangency condition Is satisfied. The upper boundary is
chosen to fall in the region of known flow properties given by the base wedge Sb" The base wedge shock
location is known and beyond this free stream conditions are applied. An analogous procedure Is used in the, z-direction.

The second-order accurate predicator-corrector scheme according to R.W. MacCormack (61] is used to
integrate equ. (29) iteratively until the term IF/ax is zero, implying the establishment of a conical
flowfield. Shock waves and slip surfaces that should exist form automatically and are correctly positioned
within the computational network of points in the converged solution. Shocks are not treated explicitly as
a discontinuity and the oblique shock relations are not used. The corresponding capturing technique is
described by P. Kutler, H. Lomax (62).

Sample calculations have been carried out for experimental data available from the literature.
F shows the computed-flowfield with the shock and slip-surface structure according to V. Shankar, D.

01dsioln, P. Kutler [593 compared with the experimental results of A.F. Charwat, L.G. Redekopp (27]. The
entire experimental wave structure is displaced outward relative to the inviscid numerical results because
of the effective thickening of the body due to the presence of a laminar boundary layer. The difference
between the experimental data and the inviscid numerical results suggests that the viscous effects are
wore dominant in the -three-dimensional corner region than in the two-dimensional wedge flow region.
Outboard of the embedded shock the inviscid flow is completely two-dimensional. The compression in this
region, observed in the experiments, is caused by the separation of the laminar boundary layer. Thus the
Inviscid numerical solution turns out slightly different from the schematic view in Fig. 8. in which plane
shock waves have been assumed. The details show that the corner shock and the embedded shock are also
curved and that the flow behind them is not exactly parallel. Correspondingly the slip surfaces are curved
and their intersection point in the bisector plane is therefore located far more inboard. The deflection
of the flow in the vicinity of the corner center is achieved by a continuous compression.

A corresponding comparison between the inviscid numerical results according to P. Kutler [583 and the
high Reynoldsnumber experimental data of J.E. West, R.H. Korkegi [31) is shown in Fig. 32. Again the
embedded shock and the slip-surface--are slightly curved. The numerical corner shock is o-und-more inboard
than the experimental one, but the wedge- shocks agree exactly. Again the experimental shock structure has
moved outboard as compared with the inviscid numerical result, but this displacement is much weaker for
the present case of turbulent boundary layers. A comparison of the numerical and experimental surface
pressures for turbulent boundary layer is shown in Fig. 33. The first pressure rise in the experimental
data-with decreasing 7 indicates the onset of separation. This is followed by a reduced gradient region
which indicates separation and by a rapid pressure rise which is related to reattachment. The measured
pressure between the reattachnent point and the corner center is greater than that of the inviscid result.
This indicates again an apparent thickening of the body in this region due to boundary layer displacement
effects. Similar comparisons have been carried out by D.A. Anderson, R.K. Nangia [60] for swept and
unswept corner configurations, which included also unsymmetrical cases and expansion flows.

Another approach for the numerical solution of the Euler equations has-been carried out by F. Marconi(563. The computational procedure utilizes again a second-order finite-difference marching technique and
all discontinuities, shocks and slip surfaces, are fitted with the appropriate jump conditions. The triple
points are computed exactly. Results according to this numerical approach are in excellent agreement with
the shock-capturing results of P. Kutler [58] as shown in Fig. 32 for the shock structure and in Fig. 33
for the surface pressure distribution in a symmetrical configuration. Eor unsymmetrical configurations
some differences between the shock-capturing and the shock-fitting solution were found. The paper of F.
Marconi (563 contains some sample calculations which show the effects of parameter variations such as
leading-edge sweep o, corner angle o and free stream Machnumber M on the shock structure. It is shown for
inlet configurations that large portions of these flows are dominated by the conical flows originating at
the corners.
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Fig. 31: Density contours plot in a symmetri- Fig. 32: Shock wave pattern in a symmetrical,

cal, unswept, rectangular corner unswept, rectangular corner (6=9.50)
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Recently J.A. Martin E63J applied a shock-fitting numerical algorithm for the solution of the Euler
equations to rounded corner configurations. It turns out that with increasing radius the shock system
moves outward.

4.2. Viscous flow

For compressible viscous flow in corners several attempts exist to calculate the boundary layer flow
for a given outer potential flow, see e. g. M.11. Bloom, S. Rubin [64], P.A. Libby (65], B.C. Weinberg,
S.G. Rubin [66], K.N. Ghia, R.T. Davis (67] and A.G. Mikhail, K.N. Ghia (68]. In this kind of
investigation the classical boundary layer concepts are applied. The inviscid outer flow is assumed to be
smooth with only small transverse pressure gradients in comparison with the streamwise pressure gradient.
In supersonic flow shocks are not taken into account. For the real axial corner flow problem these results
are asymptotic solutions under particular flow conditions.

The behaviour of the viscous flow region in axial corner flows depends strongly on the shock wave
structure in the inviscid outer flow. Realistic results can only be expected if this inviscid outer
flowfield is taken into account properly. Therefore the problem is amenable-to solution only through the
use of the Navier-Stokes equations. Some attempts in this direction will be discussed subsequently.

4.2.1 Solutlnns of the full Navier-Stokes-equations for laminar flow

Basis of the numerical calculations are the Navier-Stokes eq":tions which may be written in
conservation -form as

31 (31)

where

pv (32)

pe

denotes the vector of the dependent variables I, pV, pe'. The vector fluxes 7, and R can be split up in
their inviscid parts i and their viscous parts v as

PU 0
pul+p 'xx

T "uv 'ry (33a)

pv 0

lvw yz
pe'v + pv 'qy + y,

S..........b)

v I
-J:w

{,v +-vq
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P, 0Pwu Tzx

Rt R I " Y (33c)

pe'w + pw + +*'
z z

In these equations e' is the specific total Pnerc'

U
2 
+ V

2 
+ W

2

e' C vT + (34)

and r' is the viscous stress ensor

P'= DefV + W( 9 )1 (35)

which contains the bulk viscosity term with N -2p/3 and I as the unit identity matrix and the shear
viscosity terms with the deformation tensor

3u Du au au av aw

v a3v av au av aw (36)

w w aw au Bv aw

The complete stress components can be obtained from the stress tensor

- pT. (37)

The work done by the viscous stresses is

' .V •, (38)

and the heat flux is

q -kVT. (39)

In inviscid flow the viscous terms in the above equations vanish

rv . v . v 0

and the remaining set of equations (an be easily transformed into the system of equ. (29), if the heat
flux due to conductivity is omitted, q - 0.

For laminar flow closure of the problem is formally achieved by applying the equation of state for a

perfect gas

pp R T (40)

with constant specific heats C and 4' (ratio y C /C ), by Sutherland's viscosity law and by the
application of a constant molecufar PrJ~dtl number (PrP- b.73). This set of equations for laminar flow has
been solved numerically by J.S. Shan,, W.L. Hankey (69) and J.S. Shang E70 for the flow in axial corners
at hypersonic speeds. It has to be mentioned, however, that another computer code has been written at
about the same time by C.M. Hung, R.W. MacCormack (203. Sample calculations by means of this code have
been carried out for the glancing shock wave problem discussed briefly in section 2.2. A direct comparison
of the results of both numerical appoaches for the same configuration does not exist for axial corner
flows. The details of the numerical procedures are not repeated here. The equations are transformed in a
nonorthogonal conical coordinate system and they are solved using a two-step predictor-corrector scheme.
For a proper capturing of the shock artificial viscosity-like terms were added to the difference
equations. In the first paper [693 the numerical scheme was fully-explicit, and correspondingly excessive
computing time was needed. In the second paper (70) a partly implicit numerical scheme was used and thus
the computing time was reduced by one order of magnitude. The same efficiency was achieved by C.M. Hung,
R.W. MacCormack [203.

The sample calculations in (69], (70) were carried out for the unsymmetrical corner configuration
measured by J.R. Cooper, W.L. Hankey [323. Fig. 34 shows a comparison of experimental and theoretical
pitot pressure contours. The bow shocks on the wedge side and the flat plate side are clearly indicated.
On-both sides the outer-edge of the boundary layer is marked by a sudden drop of pitot pressure. In the
experiments a series of triple points has been found within the intersecting shock system. -Although -the
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theoretical result is in general agreement with the experimental data, the mesh-size was too coarse in
order to find details. The numerical result exhibits a certain amount of shock wave smearing. The
numerical solution indicates one triple point only, but more details as for example the location of the
slip surface are missing. Within the boundary layer on the flat plate side two separation lines and two
reattachment lines have been found in the experiments, indicating the formation of a primary and a
secondary vortex. The theoretical result is shown in Fig 35. Apart from the authors (32] interpretation
bth separations are clearly identified from the vector p ot of the local shear stress and they are in
good agreement with the experimental data. Unfortunately in the flowfield the secondary vortex was not
captured properly duL to the limited number of grid points. The overall result of the numerical solution
was a nearly conical flowfield, but a detailed analysis of the situation in the strong and weak
interaction regions of the flow depending on the viscous interaction parameter are still missing. The
surface pressure and heat transfer distributions are shown in Fig.36. The pressure- distribution is in
-excellent agreement with the experimental data, showing the pearvalue at reattachment and some pressure
reduction in the region of the primary vortex. The heat transfer maximum is also located in the
reattachent -region; experimental data are not available.

4.2.2 Solutions of the full Navier-Stokes equations for turbulent flows

For the case of turbulent flows the set of equ. (31) to (40) can be used in principle, but the tensor
of the viscous stresses containis now the Reynolds stresses and the heat fluxes include a convective term
due to the turbulent motion. To accomplish a simple means of effecting closure to the equations of motion
the eddy-viscosity concept is adopted. The Reynolds stress tensor is represented by the product of the
eddy viscosity and the mean flow velocity gradient. This leads to the viscous.stress tensor as

' (P + c) DefV - 2(v + c)(V .V). (41)

Concerning the heat flux the effective conductivity can be taken into account by a turbulent Prandtl
number (Prt . 0.9) and this leads to

Thus the system of conservative equations reduces to the same form as that for laminar flow.

In the numerical solutions of the Navier-Stokes equations for turbulent flows which exist so far
different eddy viscosity methods have-been used. In the papers of C.M. Hung, R.W. MacCormack [21] and C.C.
Horstman, C.M. Hung (223 an algebraic-one-layer model has been used as

c(y) - p(Dl)Zu. (43)

The eddy viscosity is proportional to absolute magnitude of vorticity

Izl w I (44)

4
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and it vanishes automatically when the outer edge of the boundary layer is reached. D is the van Driest
damping factor

D - dexp 2 a (45)

in which instead of the distance from the wall a modified distance d as

2yz

d - 2(46)
y +z + /YZF+z F

has been used. The mixing length scale I is chosen in a single function

I = X6 tanh I- d (47)

were X is a constant (X - 0.08) and 6 represents the value of d at the outer edge of the boundary layer.
This kind of formulation fulfils the boundary conditions far away from the two walls in corner
configurations.

Later in the paper by D.D. Knight (23) this turbulence model has been replaced by the well known
two-layer algebraic eddy viscosity nodel of B.S. Baldwin, H. Lomax [713. In the inner-region the
Prandtl-Van Driest formulation according to the equ. (43) to (46) is used with the mixing length scale

1 - 0.4 . d (48)

and in the outer region a modification of the original Clauser-torrilation has been applied, see (71],
which depends also on the magnitude of the vorticity w. This. removes again the necessity for finding the
outer edge of the boundary layer. Nevertheless inner and outer region have to be adapted in such a way
that the location of the switch from inner to outer region is improved in the subsequent steps of the
iteration. In the papers of C.M. Hung. R.W. HacCormack E21), C.C. Horstmann, C.i Hung [22) and D.D. Knight
(23) the sample calculations for corner flows have been carried out for the glancing shock wave problem as
mentioned briefly in section 2.2. These computer codes have not yet been applied to analyze the structure
of inlet type corner configurations although they would be very well suited for this task.

In the paper of J.S. Shang, W.L. Hankey, J.S. Petty (72] another two-layer eddy viscosity model is

used. In the inner region the eddy viscosity is assumed as

ci -p(D'l)z . an (49)

where 1 is the mixing length scale according to equ. (48) and (46) and D' is the modified van Driest
damping factor

0' = I 'exp'd- L f 2 (50)

The eddy viscosity is related to Jlqi ni, where q is the magnitude of the velocity

q - u +v2 +w2  . (51)

In this formulation symmetrical corner configuration call easily be treated. In the outer region Clauser's
velocity defect formulation is used in the form

0 qmax

I-
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where n is the maximum dimension of the computational domain. Since the outer edge of the boundary
layer ipa8 ot clearly defined an intermittency correction in the law of the wake is not applied. In order
to describe also transitional phenomena for the axial- corner flow problem the entirely empirical tran-
sition mode-of S. Ohawan, R. Narasimha (73) has been applied in a version extended to three dimensions.

Sample calculations have been carried out by J.S. Shang, W.L. Hankey, J.S. Petty [72] for the
symmetrical 6 = 9.50 wedge corner configuration which has been investigated experimentally by J.E. West,
R.H. Korkegi (31) at Machnumber M. -3.0 and high-Reyncldsnumbers. The numerical results indicate how - as
the flow progresses downstream, undergoing transition from laminar to turbulent - the shock system
readjusts itself to accomodate the distinctive change in length scale. Fjg_7 shows the shock wave
structures and the associated slip surfaces for laminar and turbulent flow. UoR agreement is observed
between the computed and experimental values in the location of shock waves, triple points and slip
surfaces. The corresponding pressure distributions have already been discussed in Fig. 30. Again the
agreement between the experimental data and the numerical solution is excellent. Some differences might be
due to the fact that the Reynoldsnumbers are not exactly the same. Fg. 38 shows the shear stress plot in
which, however, only the orientation of the resultant stress is given,_since the magnitude of the shear
stress-changes rapidly. The laminar/turbulent transition is clearly indicated and the corresponding shift
of the separation line is in good agreement between theory and experiment. The boundary layers are very
thin in this case. Therefore the limited number of grid points did not allow the study the flow
separations in detail. The heat transfer rates had not been measured in the experimental investigation-and
therefore also theoretical results are not available.

4.2.3 Solutions based on thin-layer approximations of the Navier-Stokes equations

For the solution.of the full Navier-Stokes equations large computer storage capacity-as well as much
computer tire is needed even for implicit-explicit difference schemes. Therefore Prandtl's concept to omit
comparatively small and insignificant expressions and to retain only the most important terms in the
,avier-Stokes equations has been applied anew, and this led to the thin-layer approximation of the
Navier-Stokes equations as described e.g. by B;S. Baldwin, H. Lomax [71]. The thin-layer approximation
neglects the diffusion process parallel to the body surface as Prandtl's boundary layer theory does, but
it retains all three of the momentum equations and-makes no assumption about the pressure. This permits a
straightforward computation of separated flow regions since no singularties occur at the separation
points.
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For a symmetrical flat plate corner configuration the Navier-Stokes equations according to equ. (31)

to (40) are modified as follows: 1) All inviscid fluxes F ,Gi and nI are retained; 2) all velocity
gradients in x-direction are neglected; 3) in y- and z-direcdions all de~ivatives are neglected which are
perpendicular to the direction under consideration. For turbulent flow this leads to

i, av V (a2u 2c Ny=X 2+c
xx X- TY 'yy 2P + 2c T- zz +2+2c (52)

' = ; = y (53a)

y w 7 ' =y (53b)

=0 T.' = T (53c)

where X - -2v/3. The work done by the viscous stresses is then calculated from equ. (38), and for the heat
flux components according to equ. (42) yields

i ax0O; 4y =-Cp (54t/

*z Cp + (54c)
Pr Pr t

It has to be noted that the approximations according to equ. (53) are rather crude. It turns out that
T',. , 'T x T , and the neglected derivatives can be in the same order of
ma itudeys they'etaine one. The dly argument for this is the fact that in a corner for small values
of y and z the velocity components v and w as well as their derivatives are small.

The thin-layer approximated equations have been written in nonorthogonal coordinates for a
wedge/plate corner configuration by C.H Hung, S.S. Kurasaki [743 and sample calculations have been carried
out for the glancing shock wave problem and turbulent flow, which had already been treated on the basis of
the full Navier-Stokes equations by C.M Hung, R.W. MacCormack [21]. The paper (74] contains no new results
concerning corner flows, but good agreement between the full Navier-Stokes solution and the thin-layer
approximation has been achieved at a 20% reduction of the required computation time. Calculations of this
kind for the intake type of corner configurations, considered here, have not yet been carried out.

For the sake of completeness it may be mentioned that there exist also approximations of the
Navier-Stokes equations for axial flow in corner configurations at high Machnumbers and low
Reynoldsnumbers, which are valid in the strong interaction region at high values of j as well as in the
slip flow regime. In this case the governing equations become parabolic and solutions of this kind have
been published by R.J. Cresci, S.G. Rubin, C.T. Nardo, T.C. Lin E28].

4.2.4 Solutions -based on local-conical approximations of the Navier-Stokes equations

The basis of this kind of approach are the Navier-Stokes equations in sherical r,o,o-coordinates. For
the corner configurations under consideration the inviscid flow is conical and the viscous flow is nearly
conical, at least for weak interaction. This means that all derivatives with respect to the radial
distance r may be regarded as small. Applying this approximation, i. e. a/ar = 0, to all fluid quantities
leads to the following "locally conical" Navier-Stokes equations

au +0 + + 0(55)

where

U = sina; = (vJ - )sino; U-- (v - ) (56)

P 0 0PV r 'oIo

pve ; ; (57)

Pe - + 0q, +
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I V T+ (60a)

00 ror +%o + o,(1b

In these equations the fluid properties, density P, velocity components v ,v0  v, internal energy e,
pressure p, temperature T and the viscosity P, have been nondimensionali~d with respect to the free
stream values P., , V , 0 V~2, T t- T 'and v , and the time t has been nondimensionalized by r/V,.
correspondingly . For viscous flowsta lenght scale is contained in the Reynoldsnumber Re - /
which is related to the crossflow plane, in which the flow is calculated. The pressure is giv'n as'

p - (Y - 1) P(e - (v1 +-v.2 + v2)/2) (62)

and the viscosity is accounted-for by the Sutherland formula.

If the viscosity effects are neglected, P 0, and for heat conductivity k -0, the locally conical
Euler equations result from equ. (55), (56) and

0 0 Pr
0 0 2042 -p(VO2+ V2

'g -p 0 H -1 3pV r - (p4+V tg (3
op PrVO Q +v v ctg o (3

.vsp _v OP 2v r (Pe + p)

No length scale occurs in the Euler -equations, which indicates that conical Euler equations describe
strictly conical inviscid flows. The-nonconicity is all introduced by the viscous effects.
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The derivation of these equations as well as some exploratory sample calculations may be taken from
N. Qin, B.E. Richards [753. The predictor/corrector difference scheme is also described there. For
acceleration of the convergence to steady state a multigrid procedure is applied and for stability reascns
local variable time steps are used. To dampen numerical oscillations caused by strong shock waves an
adaptive artificial viscosity term is used which is of significant magnitude only near shock waves. It has
no effect within the viscous region itself.

Calculations according to this method for corner configurations have been -carried out by K.W. Scriba
(76] for the a - 30o swept 0 - 900 corner configuration measured by W. Mdllenst~dt [37], ro8] at
M = 12,76 according to Fig. 17. This flowfield has already been discussed in many details in sections
3.3.2 and 3.4. to 3.6. The calculations have been performed for the following additional data, taken from
the experiments:

p. = 68.48-Pa; pO 
= 

150 105 Pa; To - 1300 K; T, 38.73 K; TWa = 300 K.

The spherical computational surface was located at a distance r - const., corresponding to a
Reynoldsnumber Re = 4.5 • 106, where the experimental data have been taken.

A comparison of the measured and the computed flowfield is shown in Fig. 39. In the experimental
data, the pitot pressure jumps at the shock waves and the slip surface are smeared due to the probe
thickness. In the theoretical results the Jumps are even more smeared due to the artificial viscosity
which had to be introduced in order to damp the numerical oscillations near the discontinuity.
Nevertheless the general properties of the flowfield are in excellent agreement between theory and
experiment. This may especially be seen for the pitot pressure plateaus which are located behind the wedge
shock, behind the corner shock, between embedded shock and slip surface, in the inner corner region as
well as in the center of the primary vortex. The flow pattern in the corner cross-section according to the
theory is drawn in Fig. 40 together with the author's [76] interpretation. The shock waves and slip
surface formation is completely the same as measured by W. Milenst~dt (37]. The same applies for the
structure of the viscous flow. The disturbance in the wedge flow occurs due to the flow separations
generated by the embedded shock. The primary vortex is clearly detected in the flowfield. Underneath the
primary vortex also a secondary vortex has been found by the theory in the correct position, but one has
to bear in mind, that the resolution of this vortex is very poor due to the limited-number of grid points
in this region.

In the inviscid flow behind the embedded shock and below the slip surface, the theoretical result
shows the formation of a vortex close to the bisector plane. This-kind of vortex is new and it has not yet
been found neither in experiments nor in other numerical solutions. This vortex may be called the corner
vortex. It is located in the flow underneath the slip surface. The origin of this vortex is not yet
understood. It might be associated with the inward flow of the two slip surfaces (which are actually
vorticity layers) along-the bisector, but this-matter needs further investigations.

The wall pressure distribution is shown in Fig. 41. The separation at S causes a static pressure
rise which transmits through the boundary layer. The pressure increase in thi flow due to the embedded
shock is not found at the wall since the immediately following expansion compensates the effect on tie
wall pressure. The steep increase of the wall pressure takes place towards the reattachment point R . In
this region some. discrepancies between theory and experiment are-present, which are due to the difflo.ul-
ties in the detemination of the reattachment point R in the experiments, and due to the fact that the
very narrow pressure peak might not have been resolved by the few measuring stations in this region. The
vortices in the flow obviously cause some local reductions in the wall pressure distribution, which are
indicated by theory and experiment.
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The heat transfer distributions at the wall are shown in Fig. 42. The maximum value at the reattach-
ment point R as well as the minima at the separation points S and S are in good agreement between
theory and experiment. In other regions large-deviations between 'both have to be considered. It might be
that the number of treasuring stations was not enough to resove all details of the heat transfer distri-
bution found by the theory. On the other hand one has to bear in mind that the theoretical heat transfer
rates are calculated from the temperature gradients at the wall. It might be as well that the resolution
of the numerical grid was not enough to calculate the heat transfer rates properly. This applies
especially for the region underneath the primary vortex PV and the secondary vortex, where the largest
deviations have been found. Other numerical solutions of the Navier-Stokes equations do not show such
strong variations of the heat transfer rates along the wall. Further investigations on this subject are
needed.

4.2.5 Final remarks

The comparisons between experimental data and numerical solutions of the Navier-Stokes equations for
axial corner flows have shown very interesting results. Corner flows have relatively simple geometries and
they are very well suited for the validation of computational fluid dynamics. This applies especially for
laminar hypersonic flows, in which the boundary layers are thick so that flow separdtion phenomena can be
studied in detail. It applies also for high Reynoldsnumber flows for which different methods of turbulence
mcdeling can be tested.

Based on the present status of knowledge about axial corner flows, documented in this paper, further
investigations should be carried out in order to improve numerical solutions and experimental data to
achieve an even better understanding of the details of the flow-behaviour. Further investigations should
cover the following topics:

Theory:

i) Improvement of the resolution of the flowfield near the surface in the numerical solutions of the
Havier-Stokes equations in order to
a) -cover the secondary vortex properly
b) impeovethe heat transfer rates at the wall which are-based on the temperature gradients.

Ii) Improvement of the resolution of the flowfielo in the vicinity of the slip surfaces in order to see
more details of-their structure especially at their intersection point and-downstream of-it.

iii) Detailed analysis of the flowfleld in the inner corner region in order to-clarify whether-or not a
corner vortex exists and why this vortex occurs. Ccmparison of solutions of tie full and the
locally conical Navier-Stokes equations.

iv) Extensioi, of the numerical solutions to unsymtric corner configuration in order -to -understand- the
changes in the outer inviscid flowfieid from shock wave structures with two triple points -to such
with-only one triple point, and to identify -the corresponding flow separations, surface- pressure
and -surface heat transfer distributions.
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( Experiments:
i) Improvement of the resolution of the flowfield by the application of

a) smaller pitot probes
b) more measuring stations for static pressure and heat transfer rate at the corner surface.

ii) Detailed analysis of the flowfield in the neighbourhood of the slip surfaces and downstream of
their intersection point.

III) Investigations of the flowfield structure in the inner corner region in order to check the
existence of a corner vortex.

iv) Measurements on unsymmetrical corner configurations as a data base. Systematic variation of the
governing geometric parameters. Analysis of the shock structure in the outer inviscid flowfield and
the corresponding boundary layer flow including separations.

An experimental-program along these lines is presently carried out at Institut fUr StrUmungsmechanik
of Technical University Braunschweig. A close connection with theoretically working groups is anticipated.
Further progress in this field is expected from such a cooperation between theory and experiment.
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1. INTRODUCTION

There is no universally agreed definition of glancing interaction but it is usually taken to include
those situations where the shock wave generated by-one body cuts across the boundary layer growing over
another and the intersection line is swept.

Such flows are essentially three dimensional and are a sub-set of the many swept interactions shown
in Fig.1. In the simplest glancing interactions the only shock wave of interest is that formed by the shock
wave generator. Similarly the only boundary layer of interest is the one affected by shock impingement.
The boundary layer development on the shock generator and any shock from the surface supporting the boundary
layer are secondary in importance. Thus the more complex corner flows and shock-shock interactions are
placed in categories of their own and enjoy individual treatment in this lecture series.

Here we will concentrate on just four of the many geometries shown in Fig.1. These four cover the
effects of sweep and bluntness on a fin mounted at right angles to a flat plate. Hence-we shall treat
in turn

(i) sharp unswept fins,

(ii) sharp swept fins,
(III) blunt unswept fins,

(iv) blunt swept fins.

These models can easily be tested experimentally with the fin mounted on a sharp leading edge flat plate
or mounted directly-from the wall of a wind tunnel test section.

However, even with these relatively simple geometries it would be foolish to ignore the mutual
interference between the two-surfaces. In particular the bow shock generated by a blunt fin will often
cause boundary layer separation ahead of the fin root. This in turn generates an oblique shock which
interacts with the bow shock-so producing an example of the shock-shock interactions treated in detail
elsewhere in this course. Similarly, a turbulent boundary layer at the base of a swept blunt fin may
trigger leading-edge-contamination along the attachment line with consequent increases in heat transfer
rate. Hence wherever possible the flow pattern over both the plate and fin surfaces will be investigated.

The boundary layer over the plate can be laminar, transitional or turbulent. Wherever possible all
three conditions will be described though most of the experimental data available are for turbulent
boundary layers.

2. PREVIOUS SURVEYS

There have been many surveys of shock boundary layer interaction over the last 30 years. The
general survey of Green (1970) contains a discussion of flows with swept shocks and draws attention
to the continuing difficulty of defining incipient separation in a three-dimensional flow. The
review of Korkegi (1971) covers a range of viscous interactions concentrating on hypersonic Mach numbers.
He draws attention to the high heating rates that can occur with fin interactions-and to the differences
between laminar and turbulent flows. Peake and Tobak (1980) again concentrated on high speeds and
covered a wide range of three-dimensional interactions as did Delery (1988) in his VKI lectures. As
data has accumulated it has been possible to narrow the field surveyed. More recently Saida (1988) has
reviewed-blunt fin turbulent boundary layer interactions whilst most recently Settles and Dolling (1986)
have written an excellent article on swept shock wave-boundary layer interactions.

Each of these references in turn refers to a considerable-body of published material now available.

3. SHARP UNSWEPT FINS (Fig.2)

Most of the experiments have been made at high Reynolds numbers so that the flat plate boundary
layer wasturbulent. For this reason-we begin by describing turbulent interaction before presenting
the smaller number of laminar results in §3.4.

3.1. Turbulent Flow

There-have been many studies ranging from the work of Stanbrook (1961) and McCabe (1966), through the
pioneering-studies of Bogdonoff and his colleagues at Princeton who included Vas, Oskam (1975,1976),
Dolling (1983) and Settles, to the-studies of Kubota (1980) and Saida (1984). Comprehensive lists of
references are given in the various surveys already referrred to.

Many investigators have used surface oil flow, following the early pictures of Stanbrook (1961).
He used a very fluid oil mixture and was able to use one coating for a number of different wedge angles.
He clearly showed how, as the wedge angle is increased, the oil flow lines from upstream coalesce
into what he suggests is a separation line. Downstream of this line the oil also flows towards the
line of coalescence though often very slowly. The formation of a line towards-which the surface stream-
lines converge is accepted here as the separation condition.

Some of the best oil flow pictures have been produced by Oskam et al (1975) and Kubota (1980).
Copies from these are shown in Figs. 3a to 3c.



r

6-2

(1) at low wedge angles (e.g. up to,-5°say) the 'surface flow' turns towards the plane of the shock-
wave, the angle turned thiough can equal or exceed the wedge angle and the influence of the shock is felt
well ahead of its 'inviscid position' i.e. its location in the freestream well away from the wall.
Even at low a there is evidence of a small corner vortex as the higher pressure on th,, wedge attempts to
escape up the wall surface.

(i0 at moderate a (say between 5 and 100) the streaklines ahead of the shock converge and at some wedge
angle coalesce into what Kubota calls a line of complete convergence. This is taken to be the separation
position. Similarly a line of divergence is also detectable on the wall surface close to the corner.
In the corner the small corner vortex persists as shown by a convergence (i.e. separation) line on the
wedge surface and a divergence (i.e. attachment) line on the wall.

The flow patterns proposed are shown in Fig.4. More recently the experimental work of Settles and Lu
(1985) and the computations of Hortsmann (1986) have both confirmed the very flattened vortex which is
formed along the wall. The calculations by-Knight et al (1986) not only suggest the mean flow field
structure shown in Fig.5 they also observe "a second small vortical structure within the fin boundary
layer and close to the corner, in agreement with the experimental observations of Kubota and Stollery
(1980)".

The broad features of the ineraction seem well established but more detailed questions remain. The
shock affects the boundary layer and eventually causes separation, how does the affected boundary layer
alter the shock pattern? Secondly what happens near the nose of the wedge where it intersects the wall?
The vapour screen pictures by Kubota (1980) suggest the shock bifurcates near the wall and in their
review Settles and Dolling sketched the pattern shown in Fig.6a drawing on the work of Oskam et al (1975)
and Zheltovodov (1979).

Very recently Lu and Settles (1989) presented some laser lIght-screen pictures in a plane roughly
normal to the inviscid shock. At M. - 3.44 and a fin angle of 150 the main flow-field structure features
are visible. They are interpreted in Fig. 6b. The lambda foot of the shock wave is clearly visible
but more interestingly a curved line from the triple point curves round and impinges on the wall near the
wall/fin Junction. Using their interpretation thL authors then considered the streamtube-processed by
the lambda shocks S2 and S3 and bounded by the slip surface (a) on one side and the vortical separation
(b) on the other. They suggest that this streamtube curves and accelerates-towards the test surface
before finally decellerating through a normal shock S4. It is this-streamtube (or supersonic Jet)
impinging on the surface that causes the high pressures and high heat transfer rates observed near flow
attachment by many investigators. The figure (6b) is highly suggestive of the shock/shock interference
fields studied by Edney (1968).

The figure is also similar in some ways to 'one half' of the flow in a corner. This is not surpirising
and reference to the-work on 900 corner flows of Charwat and Redekeopp (1967) and the magnificently
detailed experimental (laminar) results of Kipke and Hummel (1975) and Mollenst~dt (1984) shows many of
the features now described by Lu and Settles (1989) for the case of turbulent glancing interaction.

An electron beam photograph (Bertram and Henderson 1970) taken in a helium tunnel at M. = 19 for
laminar flow through a 900 corner formed by two 100 wedges,clearly shows the slip line starting from the
shock triple point and bending round to reach the surface. The photograph also shows how close this
point is to the-vortex attachment point and certainly in the Garman work referred to above, the peak
values of pressure and heat transfer are allied to the main vortex attachment points.

Near the root of the fin, the fin penetrates the boundary layer-whose local Mach number decreases
as the-wall is approached. At some point the wedge angle will reach the shock detachment angle and
between this point and the sonic line within the boundary layer the shock will be detached. A possible
flow pattern is shown in-Fig.7. Such a patt?,'n is supported by the oil flow pictures of Kubota but
not obvious in those of Stanbrook and unfortunidtely not in the field of view in the pictures taken by
Oskam. Obviously the feature is a minor one and depends on the wall boundary layer thickness and on how
sharp the fin leading edge is.

From the design point of view, three features of great importance-are the pressure distribution, heat
transfer rate pattern and flow steadiness. Typical pressure distributions along lines parallel to the
fin surface are shown in Fig.8. The way in which the viscous interaction smears out the abrupts rise
occurring across the shock in the free stream is clearly visible. A complete map of the way in which the
pressure distribution parallel to the free stream direction varies with wedge angle is shown in Fig.9
taken from the work of Oskam. Both Figs. 8 and 9 show how a 'plateau' of pressure develops as the
boundary layer separates and this is reminiscent of '2D' separation.

To get-a clearer picture of the overall pressure pattern it is necessary to plot out the Isobars.
This isdone in Figs.lOand 11 and the approximately conical nature of the flow, apart from an 'inception
region' near the nose,is immediately obvious. There have been many attempts to scale the flow using
conical coordinates and among the latest is the paper by-Lu et al (1987). We shall see later that the
conical nature of the flow ,in the sense of constant pressure, heat transfer and main flow visualisation
lines lying along rays from an-apex) also holds for laminar flow.

The pressure-distributions in a plane normal -to the wedge surface are replotted from Stanbrook
In Fig.12. The pressure rises to the Inviscid wedge pressure right in the corner. The correlation of
Neumann and Hayes (1977) shows that in fact the peak pressure (and heat transfer rate) occurs on the
wall close to the root of the fin. It is likely that the density of pressure tappings in Stanbrook's
experiment may not have been sufficient to pick up this peak.

Korkegi (1976) has reviewed the structure of 3D glancing interactions and shown the connection between
the flow features and the spanwise distributions of pressure and heat transer rate. These are reproduced
in Figs. 13,14 and 15. There is no doubt that the correlations of Neumann and Token (1974) for pressure
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and heat transfer peaks are very useful for design purposes as is the work of Scuderi (1978). The similarity
between the pressure and heat transfer rate distributions when non-dimensicnalised with respect to their
freestream values is striking. This is often the case for turbulent separated flows.

From the considerable body of work available it is possible to construct the main-features of both
separated and unseparated flow. It remains to try to define the boundary between them.

3.2. Incipient Separation

Because incipient separation is difficult to define McCabe suggested the criterion that 0 ai when
the deflected surface flow becomes aligned with the inviscid shock. This enabled him to calculate the
oi vs M. boundary shown in Fig.16. Korkegi (1975) found a better fit to the experimental data was
given by M..ai 

= 
17

°
. However, as many investigators have pointed out the flow can turn through larger

angles than the wave angle before separation occurs, (as defined by the formation of a complete convergence
line). A collection of actual separation measurements is shown in Fig.17. The dearth of data at hypersonic
Mach numbers is immediately apparent. Tests by Goldberg (1973) locate al between 4 and 140. In his
paper the value of 9 is plotted at M.= 5.9 but the value may have been influenced by the other walls of
the tunnel test section. Holden (1984) measures a value of 6.50 at M, - 11 based on the appearance of
a plateau in the streamwise heat transfer distribution together with a marked increase in the fluctuation
levels in the output from the local thin film gauges. Below M- -5 there seems reasonable agreement between
the various sorts of data.

One thing is obvious, namely the values of ai for glancing interaction are far below those for '2D1
interactions (see Fig.18). This may have important implications where both types of interaction are
likely to be present, as for example in rectangular wedge-type intake ducts. Goldberg's work shows how
the two types of interaction can mutually affect one another.

3.3. Flow steadiness

Turbulent flows are by definition unsteady. Numerous measurements have been made, notably by
Bogdonoff and his co-workers. This topic is covered elsewhere in the lecture programme.

3.4. Laminar Flow

When Korkegi surveyed sharp-fin glancing interactions in 1976 his first conclusion was that "the
structure of the three dimensional Interaction is not fundamentally different for laminar or turbulent
flow; it is primarily-dependent on the extent of separation."

He did of course point out that laminar boundary layers separate much more easily than turbulent ones.
The amount of laminar data available is small.

Charwat and others have studied laminar corner flows but there was little else until VKI began a detailed
investigation(of a wedge type fin mounted in th-elaminar boundary layer growing over a sharp edged flat plate)
in about 1980. The paper by Degrez and Ginoux (1983) showed that even at a 4",Mz= 2.25, the flow is already
separated-whereas ai for turbulent flow is around 10? Further experiments showed the characteristic plateau
in the pressure distributions for a - 4,6 and 81 (Fig.19). The measured pressures scale reasonably well in
conical coordinates (Fig.20) and a corresponding calculation by Degrez (1985) verifies the approximately
concial nature of the isobars. The numerical results were obtained-by solving the full compressible
Navier Stokes equations. A comparison between the measured and computed pressure distributions is shown
in Fig.22. The computation with a fine mesh gives better agreement with the experimental data. It also
gives some evidence of a secondary separation which the coarse mesh does not (Fig.23). So far the
investigation shows all the qualitative features of turbulent interaction but quantitatively separation occurs
earlier and the interaction -covers a large area.

Before leaving laminar flow it is worth noting that M6llenst~dt (1984) measured peak heat transfer
rates ten times the wedge value in a corner composed of two 8" wedges at right angles. The Mach number
was 12.3. the flow was separated and the-peak heat transfer occurred close to the attachment line

4. SHARP SWEPT FINS (FIG. 24)

Many of the flow features are qualitatively similar to the straight fin flows already described.
However, there are two important additional points to consider. (I) As the fin is swept so the shock
strength at the root, which causes the-glancing interaction, is reduced. The reduction in strength
as manifest by the shock wave angle at the centre line of the corresponding delta wing (one swept fin
and its mirror image) is shown in Fig.25; (ii) sweeping the fin reduces the Mach number-normal to the
leading edge so that shock detachment from the leading edge occurs at a lower incidence as shown in Fig.26.

4.1. Turbulent Flcw

Very little data exists but Lu (1983) and Settles and Lu (1985) studied a range of fins at M.-3
whilst more recently Fomison and Stollery (1987) examined fins with sweep angles between 0 and 750 at
M. - 2.4.

Both sets of investigators found the inviscid shock wave strength to be an important factor. Settles
and Lu managed to correlate all their data on upstream influence (Fig.28) in terms of the normal Mach
component (4) and initial boundary layer thickness Reynolds number (Re6). Fomison's data were taken
with a much thicker turbulent boundary layer and he found that the proposed correlation was less successful
for his results. The pressure distributions and isobars as measured by Fomison are shown in Figs.29
and 30. The isobars suggest the flow pattern is roughly 'conical' only ahead of the inviscid shock
position. The pressure levels for a given incidence decrease as the sweep increases (Fig.30). This is
expected since the shock strength is being reduced. Fomison non-dimensionalised his pressure measurements
using the calculated pressures on the centre line of the corresponding delta wing. This r-ems to work
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well (Fig.31) and suggests it is the total pressure rise through the interaction that is the important
parameter.

The flow pattern development is very similar to the unswept case and the development is seen in Fig.32.
The only changes to the flow proposed by Kubota are that (i) even at low fin incidences there seems to be
a small separated region near the nose. (ii) as sweep is increased so the attachment line originally at
the leading edge of the fin, moves down towards the root and the corner vortex moves closer to the
corner. The 'streamsurface' and 'vortex skeleton' representations of the flow are shown in Fig.32 for
the fin with 750 of sweep. The pressure distributions and flow characteristics normal to the shock wave
are pictured in Figs. 33 and 34.

4.2. Laminar Flows

Currently there seems to be little data available. Murakam! (1989) has made some interesting measure-
ments at M. - 7 on fins with 0 to 600 of sweep but his results await general publication. Again it is worth
looking at the data for laminar flow past swept corners (e.g. M6llendstadt, 1984) which shows significant
reductions in the surface pressure and theinal loading as the leading edge is swept back.

4.3. Incipient separation

If the inviscid shock strength at the root was the dominant factor then sweep siould increase the
incidence angle for incipient separation. Thus using F"g. 25 and taking ai - 10* for A - 0* and K.- 2.45
we would assume that at A - 750 ai would be 190. Yet the oil flow pictures and pressure distributions
clearly indicate separated flow at ai as low as 130. However, reference to Fig.26 shows that at A 

= 
750

the leading edge is subsonic and that at smaller angles of sweep the leading edge shock will become
detached at modest angles of incidence. Obviously the situation is complex and more data are required.

In the study by Settles and Lu at & 2.95 (1985) they suggest incipient separation occurs when the
inviscid shock angle (oo) ia 3' more than the freestream Mach angle (p.). The values of ai corresponding
to So 

= 
19.8 + 3.5 - 23.30 for various sweep angles are given below:

A O 20 40 65

ai 5 6 7 9

If we were to use the same criterion for Fomison's-results at M. , 2.45 then so = 24.6 + 3.5 = 28.1.and
the incipient separation-angles of incidence are:

A =0 30 45 60 75

ai 5 6 7 8 11

Since the value of ai atA 0 seems too low and the oil flow picture at A - 75 shows the flow to be 'well
separated' at a - 14-the above values must be at best tentative and echo the need for further study.

5. BLUNT STRAIGHT FINS (FIG.35)

Immediately the leading edge is blunted the whole character of the interaction region is changed.
Bluntness causes the 'inviscid shock' to stand off so that the part of the shock envelope ahead of the
stagnation point is normal to the flow and the shock there is the strongest possible for a given Mach number.

A normal shock interacting with the side wall boundary layer will usually force separation which in turn
modifies the shock pattern. Separation leads to the formation of one or more horseshoe vortices which
encircle the nose. Ahead of-the nose an oblique shock marks the start of the separation zone and this oblique
shock interacts with the bow shock at some spanwise distance from the fin root. The ensuing shock-shock
interaction can lead to complex Jet-like flows which impinge on the fin leading edge giving high pressures
and intense heat transfer rates. Shock-shock interactions form a separate part of this course where they
are treated in detail.

5.1. Turbulent Flow

5.1.1. Fin at zero incidence

The most common geometry is a fin of constant thickness with a semi-circular nose. Sometimes Just a
circular cylinder is tested mounted on a flat plate. These-are the only two configurations considered-here.

4 The inviscid shock shape must again be found experimentally. Even in the root region two dimensional
results for the stand-off distance will be optimistic unless the span diameter ratio is very big (see Fig.36).

There have been many experimental investigations notably by Price and Stallings (1967), Kaufman et al
(1972), Sedney and Kitchens (1977), Bolling and Bogdonoff (1982), Ozcan (1982) Saida and Hattori (1984)
and Fomison (1986). Recently the problem has been studied mathematically by solving the Reynolds-averaged
Navier-Stokes equations by Hung and Buning (1985). Agreement with experiment is very encouraging.

The broad features of the fkod are common to all investigations and are-sketched simply in Fig.37. The
differences emerge when more detail is required. Most experimental studies have to rely on surface
measurements and some 'rather cloudy' vapour screen pictures. Sidney and Kitchens took some excellent flow
visualisation pictures, three of which are reproduced in Figs. 38-40. They found evidence of 2,4 or 6
horseshoe vortices encircling the cylinder depending on the Reynolds number. As Re increased so the
number of pairs of vortices-decreased. The position of the primary separation and attachment points
varied very little but the structure between them changed significantly as sketched in Fig.40.



Fomison's oil flow pictures suggest four vortices though the one just in frontof the fin is tucked
into the fin-?late junction and can only be seen on the surface flow picture around the sides of the fin.
One of Fomison s pictures is shown in Fig.41 and the interpretation is shown in Fig.42. Isometric views
of the surface streamlines together with vortex skeleton representations are given in Figs.43 for large
and small D/6.

The flow shows many interesting features with the horseshoe vortices being stretched around the sides
of the fin and appearing to weaken and lift off from the surface. The very high pressure air near the
base of the fin escapes around the shoulder of the fin root and upwards over the fin giving a Jet-like
streak pattern. This has been noticed by many investigators.

A typical pressure distribution along the centre line is shown in F1g.45. The pressure starts to rise
just ahead of the separation line as marked by the surface oil flow and is close to the extrapolated
position of the oblique separation shock as might be expected. The first peak is close to the attachment
point A, (Fig. 40 and 43) and the trough seems close to the secondary separation point (S1 in Fig.40 and
S in Fig.43). The pressures close to the nose are difficult to measure but there is-a second peak (see
F2g.A7) just before the fin is reached. This is probably associated with the attachment line A in Fig.40
(Ai in Fig.43). The pressure-values at this second peak are far higher than at the first peak but they
falI short of the value behind a normal shock wave at the freestream Mach number (see Fig,47). Values
gh ater than the stagnation pressure are measured ir the region affected by shock/shock interaction and

a1 return to this phenomenon later.

Dolling and Bogdonoff (1982) showed that the scaling parameter for the centre line pressure distri-
bution over a wide range of M. and 0/6 was the leading edge diameter D(provided that the boundary layer
was turbulent). Figure 46 shows the correlation. The upstream influence is between 2 and 3D and the
pressure ratio at the first peak is around 2. There is an effect of Mach number as is clear from the work
of Price and Stallings (Fig.47) but it is only really significant for the value of the second peak near
the root of the fin.

Dolling-and Bogdonoff also showed that for a given Mach number the whole side wall pressure field
scaled with nose diameter 0. This was confirmed by the work of Fomison (Fig.48) in which four different
fins were used at t. - 2.45. Pressure distributions at y/D - 0,1,2,4,5 and 8 are shown in Fig.48.
The characteristic double peak pattern in the streamwise direction rapidly subsides into a single hump in
the neighbourhood of the inviscid shock position as the spanwise distance is increased. This is-also
shown in the sidewall isobar plots shown in Figs. 49 and 50.

Dolling and -Bogdonoff further showed (Fig.51) how the pressure distribution along the fin leading
edge correlated with Z/D provided ,that the root shock wave structure is clear of the boundary layer
thickness i.e. D/6a 4. At M. = 2.95 the pressure peaks at Z/Dk 1 and because of the shock/shock interactions
part of the flow decellerates through a series of oblique shock waves instead of a single normal shock
and so recovers to a pressure greater than the stagnation-pressure (pw/p2 > 1). At M. 

= 2.95 the ratio
Pw/PT2 reaches 1.5 but at hypersonic speeds it can reach much higher Values. The shock/shock interaction
is type IV as described-by Edney (1968).

As the value of D/6 is reduced so more and more of the shock interaction becomes submerged in the
bounaary layer. This is shown in the photographs taken by Fomison (Figs 5235) and the effect on the fin
leading edge pressure is shown in Fig.53. Some very useful measurements of heat transfer were made by
Hung and Clauss (1980) on a flat plate from which a cylinder was mounted. For H/D > 2 (long protuberances)
the heat transfer rate distributions along the plate centreline seem to scale with diameter D and the first
signs of disturbances occur about 3 diameters upstream. The heat transfer centre line plots look similar
in form to the pressure distributions as measured by other investigators.

Before leaving the blunt fin at zero incidence the numerical work of Hung and Buning must again be
mentioned. They have-simulated the flow numerically and-despite the limited mesh resolution available
and the complicated flow fieldthey achieved good agreement with the experimental data of Dolling et a].
Only one pair of horseshoe vortices was found (Fig 54) but the surface pressure distributions agreed well.
A sketch that Fomison made from his surface oil flow pictures at M. = 2.45 is compared with the calculated
limiting streamlines on the 'unwrapped' fin surface at K. - 2.95 in Fig,55.

The calculations confirm that the spatial extent of the interaction is dominated by the inviscid

characteristics of the flow i.e. the physical size of the fin, as found experimentally.

5.1.2. Fin at incidence

Both Dolling (1982) and Fomison have studied blunt fins at incidence. As might b. expected the region
near the nose is bluntness dominated-but far away from the nose the flow becomes incidence dominated and
must tend towards the results for a sharp fin. Dolling was able to sketch a rough boundary separating
these two-regions at M. a 3 (Fig.56). Blunting the leading edge displaces the inviscid shock laterally
but well away from the nose the shock angle must asymptote to that appropriate to a wedge and Fig.57 shows
this to be the case. Pressure distributions measured in this far field region,relative to the shock
positionshould be similar, see Fig. 58.

Fomison's plots of the oil flow primary separation lines (Fig.59) show the nose dominated region and
how, in the far field, the separation line is parallel to that for a sharp fin at the same incidence. The
corresponding pressure distributions show how the results in the nose region are unaffected by incidence.
The pressure levels downstream exceed the wedge values because of reflections from the bottom liner of
the test section.

Once again the scaling factor D correlates the pressure distributions at a given incidence (Fig.60).

At hypersonic speeds the various domains are characterised by the parameters MOaI for incidence,
Mo2CD2/3(x/d)-/3 for bluntness and (M.gC/Rex)n for viscous interaction where n is 2/7 for I/5 for strong
and weak interaction respectively. The relative size of these parameters will determine ,hich is the
dominant influence.
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5.2. Laminar flow

Dataare more sparse for laminar flow but as expected all investigators find that the area disturbed,
for a given size of fin (or cylinder), is for greater than when the boundary layer is turbulent. Ozcan and
Holt's (1984) studies at M. - 2.36 clearly showed three separation lines on the flat plate ahead of
the cylinder mounted on It. They examined the flow field postulated by Sedney and Kitchens (Fig.40)
but could not confirm it by laser-velocimeter measurements. Instead their measurements suggested an
unsteady and perhaps periodic flow field.

Their pressure measurements showed the interaction to begin-up to 12 diameters ahead of the
cylinder and that,for H/D > 4,the pattern did not change. For H/D < 4 the disturbed area reduces
as the H/0 ratio is reduced. Hung amd Clauss (1980) in their extensive set of heat transfer
measurements at M. - 5.3 also find the laminar interaction region extending to 12 diameters upstream
for H/D > 2. This drops to 2 or 3 diameters for their turbulent flow results. In the laminar-flow
disturbed region ahead of a cylinder the heat transfer initially drops below the flat plate value
before rising to the first peak (Fig. 61). This is similar to the reduction found in 2D laminar
separated regions and contrasts with the turbulent patterns already discussed.

5.3. Transitional Flow

Ozcan and Holt's study is-one of the few to look at the effect of a transitional boundary layer.
The distance to the primary separatiog line(S) increased very slightly with Reynolds number Re in the
laminar range 0.1 x 106 < Re < 0.3x0 . Further increase in Retsaw the number of separation lines drop
to two and then to one with the-distance S decreasing with Ret. When the flow was fully turbulent the
ratio S/D had dropped to about 2 compared with the fully laminar value of around 7.5.

6. BLUNT SWEPT FINS

6.1. Turbulent flow

6.1.1. Fins at zero incidence

Price and Stallings reported the effects of sweep on glancing interactions as long ago as 1967.
Figures 62-and 63 show-how the centre-line-pressure distribution collapses and the disturbed area (as
measured to the first sign of increasing surface pressure) contracts as sweep is introduced.

More recently Hussain (1985) studied blunted fins at sweep angles up to 75* and incidence angles of
0 - 240. The inviscid shock positions-were found by testing the relevant delta wings (Fig.64). As-can
be seen from Fig.65 the bow shock is three dimensional. It only gradually approaches the (constant) two
dimensional value of stand-off distance, calculated by considering the normal component of Mach number.

Hussain confirms the benefits of sweep in.greatly reducing the level and extent of the disturbed
pressure field (Fig.66). The characteristic double peaked pressure signature reduces dramatically in scale
as the leading edge sweep is increased. With reduced pressure levels Price and Stallings question whether
separation occurs at M. = 3.71 for sweep angles above 45o

. 
However, Fig.66 shows that the pressure rise

-to separation-only changes slowly with sweep angle and certainly Hussain's oil flow pictures show a
clear separation line Si up to the highest sweep tested (750) at M. = 2.45.

Nevertheless, the question of whether there is an incipient separation condition for blunt swept
fins has to be considered and-this is done in § 6.3. Hussain took many oil flow pictures. At sweep
angles up to 300 the pattern looks similar to that for an unswept fin with two pairs of vortices ahead of
the fin. However, Hussain interprets the 'Jet like region' seen by Winkelmann and Fomison for example,
(Fig.55) as the path of the vortex nearest to the fin root as it bends around the-fin(see-Fig.67a), When
the fin is swept back this vortex is-carried further outboard-over the fin causing extensive separation
over the fin surface (Fig.67b). Certainly the oil -flow pictures are most complex and it must be
remembered that interpreting them currently requires considerable conjecture. Moreover the real flows are
to some extent unsteady.

A mathematical simulation of the flow past a swept blunt fin has been constructed by McMaster and
Shang (1988) using the Baldwin-Lomax turbulence model. Calculations were made-at M=. 2.98 for sweep
angles of 0, 30, 45, 60-and 680. The results (Fig. 68) confirm the experimental findings of reduced
disturbance with sweep. What is particularly interesting is that at the highest sweep angle of 68* the
flow appears attached (see §6.3).

6.1.2. Fin at incidence

As for unswept fins the nose region is bluntness dominated. Figure 69-shows the centre-line pressure
to be unaffected by incidence but away from the centre line the incidence-effect becomes increasingly
important.

When-the blunt swept fin is at incidence the,pressure on the fin windward surface is raised. The
flow over the fin stays attached and separated flow regions are restricted to the plate surface. and the
corner. An interpretation of the- flow past a 450 swept fin is shown in Fig.70.

6.2. Laminar and transitional flow

Very little data exists and most of the work reported is concerned with shock/shock interactions
affecting the fin leading edge rather than the disturbed flow field over the plate from which the fin is
mountedt Bushqell (1965) tested-the configuration in Fig.71 covering the Reynolds number range ReL
from 10

° 
to 10' at K. = 8. At the lowest Re the boundary layer was laminar and a separated

zone ahead of the cylinder (swept 570 relatdie to the wedge surfaca) can clearly be seen. This reduces
progressively in -size as- ReL is increased and for ReL > 4 x 106 no separation is visible from the
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schlleren pictures.

Hiers &Loubsky(1967) tested a blunt fin mounted on a flat plate at sweep angles of 0 to 45'.

Burn marks, luminosity pictures and oil streak photographs taken at M. - 14 indicated laminar separation
(ReL - 0.56 x 105) in a typical horseshoe shaped region encircling the fin. The plate was not

instrumented. Thermocouple measurements along the fin leading edge showed how the extremely high local

heat transfer rates arising from the separation-shock/bow-shock interaction could be dramatically

reduced by sweep (Fig. 72).

6.3. Incipient separation for a blunt swept fin

For a straight blunt fin the bow shock always stands off but for a swept fin there is a sweep angle

at which the shock can attach at the root. The equivalent 'inviscid' flow is that past a delta wing with

hemi-cylindrical leading edges. Most investigators measure the shock position experimentally and Hussain

found even at a sweep of 750 the bow shock is detached at the nose. In contrast both Price and Stallings

(1967) and Winkelmann (1972) find no disturbance ahead of the nose of a 750 swept fin.

For an attached shock at the nose two conditions seem to be needed (i) the sweep must be small enough

for the leading edges to be 'supersonic' in the sense that Ma > 1, (Fig. 73). This will ensure that the

two halves of the blunt delta wing can't communicate with each other; (ii) the sweep must be large enough

for the flow approaching the nose to turn along the leading edge attachment line through an attached

oblique shock wave.

These two boundaries are shown in FIg.73 and if these are correct then for M. < 2.2. or A < 440

the shock is awlays detached at the nose. Only in region A is an attached nose shock predicted. Every-

where else the nose shock stands-off, the shock wave is therefore locally normal to the flow and would be

expected to separate th3 boundary layer on a plate placed along the wing centreline.

Fins which lie in region A may separate the boundary layer if (90 - A) exceeds (0i)20, the two-
dimensional wedge angle for incipient separation. Values of ai have been taken from Fig. 18. Of course
these values of ai may be pess.mistic since the flow in the fin nose-root region is three dimensional.

Experimental evidence is scanty and often difficult to interpret. Jones (1964) records a small
separated region ahead of 600 swept fin at H = 6 whilst Beckwith (1964) states that there was no
separation ahead of a cylinder swept back 680 from the surface of a wedge over which the effective free-
stream Mach number was 3.5. This latter value lies close to the 20 incipient separation line in Fig.73.

All we can say is that attached flow is likely in region Al. possible in region A2 and unlikely
elsewhere.

6.4. Leading-edge contamination

The flow at the leading edge of a straight wing is laminar and, in particular, the heat transfer rate
is the laminar stagnation point value. However swept wings can suffer from leading edge contamination.
If the boundary layer at the wing body junction is turbulent then the flow there may contaminate the
complete leading edge attachment line so significantly increasing the heat transfer rate values. Contam-
ination depends on the sweep angle and radius of the leading edge as well as Mach number and Reynolds
number. Poll(198S) has studied the problem and established the conditions under which contamination
occurs.

As an example of this phenomenon Bushnell (1965) showed that when transition occurred on the wedge
(rig.71) ahead of the cylinder it 'infected' the leading edge and the "increased heat characteristic
of turbulent boundary layers persisted all the way along the cylinder for both sweep angles of 450
and 60'. The effect was typically to increase the attachment line heat transfer rates by 50% above
the laminar value.

6.5. The effects of filleting

Using the 3D Navier-Stokes code provided by Dr. C.M.lung of NASA Ames, Lakshmanan et al (1988) have
studied the effects of filleting (and sweep). They showed numerically that with proper filleting the
flow patterns lose much of their vortical character.

In particular they studied a blunt fin-with-a semicircular leading edge mounted on a flat plate, at
K. , 2.4. The horseshoe vortex interaction surrounding the fin was faithfully modelled. They foundthat
in order to significantly weaken the interaction a large fillet (of radius equal to 3 times the fin
leading edge diameter) was required.

Although the mathematicalmodel hns been validated for unswept fins with no fillets, there seem to
be no experimental data as yet for fin-body junctions with fillets added.

7. SUMMARY

1.1 Shiarp fins

Separation occurs more readily in glancing interactions than in two-dimensional interactions.

The main features of the flow structure are reasonably well understood but many details require
clarification.

Leading edge sweep decreases the shock strength and hence the intensity and extent of the disturbed
flow-region on the wall. The wall pressure distributions can be correlated using the centre-line
pressure of the corresponding delta wing.
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7.2 Blunt fins

Blunt unswept fins generate a very complex flow field. The strong bow shock always causes separation
and the mean flow consists of a number of horseshoe vortices encircling the fin.

The dominant scaling parameter is the leading edge diameter.

At incidence the flow near the nose is bluntness dominated whereas the flow far away from the nose is
incidence dominated.

Sweep very significantly ameliorates the effects of bluntness. The scale and intensity of the
disturbed region Is reduced and at large sweep angles separation-may be preven'ed.

Problems peculiar to blunted fins are (I) shock/shock interactions which can lead to very high local
pressure and heat transfer loading (ii) leading edge contamination causing the boundary layer to be
turbulent along the attachment line of swept blunt fins.
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UNSTEADINESS OF SUPERSONIC AND HYPERSONIC SHOCK INDUCED
TURBULENT BOUNDARY LAYER SEPARATION

by
D.S. Dolling

Department of Aerospace Engineering and Engineering Mechanics
The University of Texas at Austin

Austin, Texas 78712, USA

SUMMARY

This review concerns the unsteadiness of supersonic and hypersonic shock-induced turbulent separated flows.
Both two-dimensional (2-D) and three-dimensional (3-D) flows are discussed. For organizational reasons, more
than physical ones, they are largely discussed in separate sections. The focus in both sections is mainly on
the intermittent region, which is the streamwise zone in which the unsteady separation shock moves. The
topics discussed include: (i) the qualitative description of the wall pressure signals and unsteady separation
process (ii) quantitative aspects of the separation shock wave dynamics and the effects of model geometry and
flow conditions and (iii) the mechanisms that have been proposed as being the cause of the unsteadiness. Also
included, is a brief discussion of the dynamics of the separated flow and the outgoing boundary layer downstream
of reattachment. Finally a few remarks are made regarding future work needed to answer some of the many
remaining questions.

1. INTRODUCTION

This review deals with the unsteadiness of supersonic and hypersonic shock-induced turbulent separated flows.
There has been sustained interest in such flows for more than 40 years now, largely because of their importance
in such-a wide variety of engineering applications. Buffeting in the transonic regime limits the maneuverablity
of combat aircraft, and has much in common with other performance limiting phenomena such as dynamic inlet
distortion and buzz: the latter may lead to compressor blade failure and large amplitude oscillatory structural
loading, respectively. At higher speeds, interactions induced by-deflected control surfaces, blunt and sharp fins
at angle of attack, protuberances, forward and rearward facing steps, wall jets, and impinging shocks can be
important. Such interactions can generate large scale, 3-D separated, vortical flows, and complex distributions of
surface pressure and skin friction; at high Mach numbers, intense heat transfer rates may occur. To complicate
the picture further, many of these flows are locally or globally-unsteady.

There have been many experimental and -computational studies of such phenomena. Only in a very small
fraction of the experimental investigations have time-dependent measurements ben made and, as far as is known,
no time-dependent computations have been made. That many such flows are locally or globally unsteady is
evident from high speed schlieren or shadow cinematography, or from examination of a series of individual micro-
second exposure photographic frames taken at random intervals in time. In practice., since such photographs
generally represent an integration of the light beam across the width~of the tunnel, and the shock structure
exhibits spanwise rippling, the data are usually qualitative. Figure 1 shows four frames taken at random intervals
of flow upstream of a blunt fin at Mach 3. Changes in the separation shock position and structure are readily
apparent.

Much of what is known quantitatively of flowfield unsteadiness comes from wall pressure fluctuation mea-
surements. Some additional data comes from studies employing hot wire anemometry. In many studies the
focus was on the unsteady separation cnock and consequently these data and conclusions form the bulk-of this
review. Much less attention has been devoted to the dynamics of the separated flow, the reattachment process,
or the dynamics of the outgoing boundary layer. A large fraction of the wall pressure fluctuation data has been
taken in nominally 2-D flows generated by forward or rearward facing steps or unswept compression ramps. Far
fewer experiments have been made in 3-D-flows, and the data are more difficult to interpret since the boundary
layer can be highly skewed.

In -this review, only flows which-are naturally unsteady are included. Forced unsteadiness, induced by
oscillating boundaries or from time-varying upstream or downstream boundary conditions is excluded. The rich
field of self sustaining coherent oscillations of impinging shear layers which was reviewed in the recent past oy
Ro.-kwell(Ref. 1) is also excluded. Similarly excluded is the sub-class of unstable shock patterns, associated
with shock oscillations induced by spiked blunt bodies. Calarese and Hankey (Ref. 2) have recently reviewed
this field. Further, since the emphasis is on supersonic and hypersonic flows, forced and self-excited oscillations
in transonic diffuser flows are also largely excluded. From the late 1970's to the present wall pressure fluctuation
data have contributed great!y to the progress made in the understanding of such phenomena and for details-the
reader is referred to References 3-7.

This-paper is split into several parts. For organizational reasons, rather than physical ones, 2-D and 3-D
flows are largely discussed in separate sections. However since they have a great deal in common they are



discussed together where appropriate. The focus is largely on the region bounded by X. and 'S', where X. is

the interaction start (defined as where the mean pressure T., first increases above the undisturbed level T,)
and 'S' is the separation location (as indicated by surface tracer techniques). Because of the nature of the wall
pressure signal, this region is called intermittent. The topics covered in the discussion of the intermittent region
include:

(a) the qualitative description of the unsteady shock-induced separation process.

(b) quantitative data and statistics of the separation shock wave
(c) the mechanisms that have been proposed as being the cause of the unsteadiness.

There is also some discussion of the dynamics of the separated flow and the outgoing boundary layer down-
stream of reattachment. The final part of the review consists of a few remarks regarding future work needed to
answer some of the many remaining questions.

2. TWO-DIMENSIONAL-FLOWS

2.1 Intermittent Region

2.1.1 Wall Pressure Signals and Intermittency

A typical pressure signal measured upstream of 'S' in a separated compression ramp flow at Mach 3 is shown
in Figure 2. The moving separation shock generates an intermittent wall pressure signal, P(i), whose level
fluctuates between the range characteristic of the undisturbed turbulent boundary layer and that of the disturbed
flow downstream of the shock. There is evidence to suggest that the instantaneous separation point and shock
foot are essentially at the same location and that 'S' is the downstream boundary of a region of intermittent
separation (Refs. 3, 8, 9). Some results from Ref. 9 are discussed in section 2.1.2. The fraction of the time-that
the flow at a point is downstream of the separation shock (given by the intermittency, -y) increases downstream
of X. until just upstream of 'S', y = 1.0 (Fig. 2d). Kistler (Ref. 10) was probably the first to observe this
behavior. The same phenomenon has since been seen in flows generated by unswept and swept compression
ramps, hemicylindrically blunted fins, sharp fins at angle-of-attack, circular cylinders, and in shock-induced
separation in-transonic diffusers and on transonic airfoils.

2.1.2 Interpretation of Separation Lines from Surface Tracer Patterns

Surface tracer techniques are widely used in high speed flows to locate "separation lines" or "lines of coalescenc .
These methods are relatively easy to use and produce highly defined, repeatable "separation lines". In the case
of the kerosene lampblack method, in which the pattern is lifted off the surface on large sheets of transparent
tape, full scale undistorted records are obtained. An example, in a Mach 3 blunt fin interaction is shown in Fig.
3. Also shown are wall pressure signals measured upstream of 'S'. They show clearly that the separation shock
wave moves well upstream of 'S' raising the question of the physical meaning of the latter.

This question has been addressed in Ref. 9 and the reader is referred to it for details. In brief, two
pressure transducers with fixed separation were-placed streamwise at different positions in the intermittent
region-upstream of a circular cylinder and wall pressure signals recorded. The Mach number was 5. Two typical
data records, one for each of the channels, are shown in Fig. 4. Next, blocks of data corresponding to flow
downstream of the instantaneous shock wave were extracted (one such block is indicated by the hatched band
in Fig. 4) and cross-correlated. Cross-correlations at all of the stations in the intermittent region are shown in
Fig. 5. They were essentially the same as those measured downstream of 'S' where the flow is always separated
(Fig. 6). Maxima in the cross-correlation coefficient at both positive and negative time delay, corresponding
to the separated-shear layer eddies moving downstream and the backflow adjacent the wall respectively, occur
at the same time no matter where the transducer pair is located in the intermittent region. These results
confirm earlier hot film measurements (Ref 8) and show that separation occurs, at, or just downstream of the
instantaneous shock position. Iience the instantaneous separation point undergoes the-same large-scale, low
frequency motion as the separation shock wave. It appears that the separation line indicated. by surface tracers
is actually the downstream boundary of a region of intermittent separation. It should be emphasized that the
results of Ref. 9 werebbtained in one type of flowfield, namely that generated by a circular cylinder, The
general'applicability of the result remains to be demonstrated.

A plausible physical explanation for the latter result, based on the response of surface tracers to the time-
varying wall shear stress is given in Ref. 8. It is summarized below. If the shock motion over a point is modelled
as a step function as-in Fig. 7a, then the-instantaneous wall shear stress at that point will have two possible
values. If the value corresponding to flow upstream of the shock wave (i.e., incoming boundary layer) is large
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and positive, and the second value corresponding to back-flow is considerably smaller and negative then the
wall shear stress time-history might look as sketched in Fig. 7b. If the ratio of their absolute values is large
then even if there is backflow for a large fraction of the time (i.e., at high intermittency) the mean shear stress,
as indicated by the hatched horizontal line, will still be positive. The surface tracer material, which has almost
zero frequency response, will therefore move downstream. On this basis, the station at which the mean wall
shear stress becomes zero will be at very high values of intermittency. It is there that the surface material will
accumulate. It should be noted that this is a hypothesis; no wall shear stress measurements have been made. It
does however explain the observed behavior of the surface tracer material and, on that basis, warrants further
investigation.

2.1,3 RMS of Wall Pressure Fluctuations and Higher Order Moments

The unsteady shock causes a rapid increase in ap upstream of 'S'. A typical distribution of ap is shown in
Figure 2c. For reference, the normalized distribution of mean pressure is also-shown. Although the pressure
fluctuations increase downstream of the shock wave (compare the signal at times f- and t2 in Figure 2b), this
contributes relatively little to the overall up. The shape of the distribution upstream of 'S' appears to be
common to all shock-induced turbulent separated flows. Similar distributions have been reported in studies
in which the pressure signal was not shown or discussed explicitly and includes circular cylinders at transonic
speeds, Refs. 11 and 12, impinging shock waves, Ref. 13, and axisymmetric flares and steps (Refs. 14, 15) over
a wide range of flow conditions. Downstream of 'S' the shape appears to bea function of the type and scale of
the separated flow. The maximum value of orp occurs upstream of 'S' and is a significant fraction of the local
T,. Measured maximum values of up in compression ramp flows, blunt fin flows and interactions induced by
cylinders as reported by Dolling and Smith (Ref. 16) range from 0.15 to 0.3- 7',.

A relatively simple analytical approximation expressing up in terms of the- contributions of the upstream
and downstream pressure fields is given by Debieve and LaCharme (Ref. 17):

dup -Y "+ ' ' - --1)
(a(ap)2+(p)2+(

where (AP)s is the mean pressure rise across the shock and subscripts u -and d refer to the pressure fields
upstream and downstream of the shock respectively. The only inherent assumption is that the upstream and
downstream fields are statistically homogeneous. If ap and pd are small compared to (AP)s which, based on
experimental evidence, is a reasonable approximation, then the expression can be simplified to:

-L\ ) -(1 -7)

which has a maximum at 7 = 0.5. As a check, (AP)s was calculated from (ap)., for the 24, Mach 3
compression ramp flow of Muck et al. (Ref. 18). The calculated shock pressure ratio was 1.6 compared to a
value of-about 1.7 eyeballed" from the-pressure signal. In practice, (ap),,. appears to occur a little further
downstream at -j 0.6 - 0.7, but as a first approximation the above works well.

The third and-fourth order moments about the mean (skewness and flatness respectively) which describe the
shape of the probability density distribution of the fluctuation amplitude have the same streamwise behavior in
different flows and can be correlated as a function of -y (Fig. 8). The skewness and flatness, both of which-are
sensitive to a few points in a data record being far from-the mean, actually increase upstream of X., as do -j
and up. Dolling (Ref. 19) reports increases in skewness at 3.4D upstream of the leading edge of a blunt fin, in
a flow in which X,, was at 2.8D. High speed (35 kHz) schlieren photography by Degrez (Ref. 20) confirmed the
presence of occasional shocks this far upstream.

2.1.4 Comments on Upstream Influence

Wall pressure signals show clearly the mechanism of upstream influence in- shock-induced turbulent separated
flows. The gradual increase in mean wall pressure near the upstream boundary of the interaction (i.e., down-
stream of X.) is not the result of upstream propagation of disturbances in a nominally steady flow, but is a
direct result of shock motion. Upstream influence varies continuously and the instantaneous value should be
mezzured from the foot of the shock wave to whatever reference position (i.e., fin leading edge) is appropriate in
that particular flow. The maximum and minimum values correspond to the furthest upstream and downstream
locations of the shock wave (i.e., the variation in upstream influence is equal to Ls, the excursion of the shock
wave).

Conventionally, upstream influence is measured from X. to the downstream- reference position and -has a
-fixed value. The pressure signals show that Xo is simply the furthest upstream station at which an increment in
7', is detectable using conventional instrumentation. Actually, at X., -" is already about 0.03-0.05, up > upo,

-------------------------
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where subscript o refers to-the uudisturbed boundary layer and the skewness and flatness already have ve'ry
large values; Hence it these parameters were used to define upstream influence, rather than 15, its magnitude
would be considerably larger. in this sense, this length scale is somewhat arbitrary and using it for comparisons

with predicted values is probably not a good test of a numerical method.

2.1.5 Shock Wav Structure

Muck et al. (Ref. IS) and Dussauge et al. (Ref. 21) made measurements using a rotatable wall plug in which 4
Kulite transducers were installed in a line with spacing, = 0.234. Simultaneously qamrpled uignals upstream of
'S' in a Macb 3 separated compression ramp flow, with the transducers allgnied stretmwise are shown in figure
9. When the shock is upstream of a given transducer (ihe., the second onc at time ti), the pressure indicated
by it and the downstrearm transducers is essentially the same, and about equal to the pressure level at 'S'. This
observation suggests that the instantaneous shock structure in the intermittent zone can be described by a single
leading shock-wave. The traditional view, is that .' increases through a continuous compression and may be
incorrect. Drawing conclusions from visual inspection of wall pressure signals is somewhat speculative, and
before auy conclusions can be drawn about shock structure, quantitative data are needed. Ensemble-averaged
values of shock strength as a function of position and the corresponding wall pressure values downstream would
provide data on (i) shock strength as a function of position in the intermiLtent region and (ii) the strength of
the compression system following the shock.

Pressure signals for the plug rotated 900(Fig. 10) show that the shock- fronthas spanwise ripples with
wavelengths as small (if not smaller) than 0.23 4. and as large (if not larger) than 0.69 8, Dussauge et al
(Ref. 21) also noted non-uniformities in the auto-correlations of the signals at different spanwise locations. The
intermittency also displayed strong spanwise non-uniformities. All of these observations agree qualitatively with
the surface flow visualization studies of Settles et al. (Ref. 22) which show the separation line-has spanwise
periodicity. Further evidence of non-uniformities are seen in space-time correlations obtained by Muck. et al.
(Ref. 23). Unlike the curves in the-upstream boundary layer, which are symmetric with respect to the r = 0
axis (as expected in 2-D flow), assymmetries appear in -the intermittent region. The authors speculate that
this deviation of the flow from its mean longitudinal direction may be evidence of the ccll structure of Taylor-
Gortler vortices which are present in unstably curved flows. However, the observation that further downstream
in the fully separated region, the spanwise-space-time correlations were again symmetric about the " = 0 axis,
suggested that the assymmetries seen in the intermittent region are more likely due to spanwise rippling of-the
shock wave. Since surface flow visualization shows evidence of streamwise vortiees downstream of reattachment
and since these probably originate in the upstream separated shear layer, or even in the incoming -boundary
layer, it is somewhat surprising that the correlations under the separated flow exhibit symmetry about the T = 0
axis. To resolve this question, additional work is reqjuired.

Spanwise wall pressure fluctuation measuremets have also been made by No,'dyke (Ref. 24) and Dolling and
Nordyke (Ref. 25)-in the intermittent region of a Mach 5, 28', compression ramp interaction. One transducer
(the reference one) was fixed in position at an intermittency of about 0.6 and the other moved spanwise relative
to it. A span-of about 46o was covered. Standard time-series analysis techniques and a conditional sampling
algorithm were used to analyze-the data.

A new parameter, the co-intermittency, 7' was defined and is the fraction of the time that both-channels
are disturbed by the shock wave at the same time. The difference between -Y and y,, the theoietical minimum
co-intermittency as a function of spanwise separation, c, is shown in Fig. 11. The theoretical-co-intermittency
is that value which would result from two statistically independent- signals and-is simply the product of the
individual intermittencies. The hatched horizontal band represents results from statistically independent runs
(SIR's). These latter cases were calculated to serve as a reference for comparison with the actual data. It can
be seen that the (Y -- y h) distribution decreases rapidly from its theoretical maximum of (0.61-- 0.612) with
increasing separation and then tails off at values just above the limit of the SIR's.

Fig. 12 shows the decay in the maximum cross-correlation coefficientt, (/,,)., with spanwisespacing. The
behavior is similar to that of (-/ - 7,h). The coherence function for several spanwise spacings is shown'in Fig.
13. The two upper curves show broad-band coherence, with the low frequencies of the shock motion highly
coherent. As e increases it can be seen that only the low frequency shock passages .:ceain coherent. At is = 1.97
it can be seen that it is only the lowest frequency shock motions which cause (-?.p)r, and' (V - Ys) -to remain
above the statistically independent-limit. These data (and additional results in Ref, 24 and 25 not cited here)
are particularly difficult to interpret unambiguously but seem to support the view thc "the shock moves as an
almost-planar unit on which is superposed- a small scale rippling'mnt. on" (Ref. 24). Many questions reinain
concerning the scale of the rippling, the cause, etc. and is a fruitful area for future work.

A _
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2.1.6 Power Spectra in Intermittent Region

Power spectra at the location of (ap)mx from Dolling and Brusniak (Ref. 26) and Dolling and Smith (Ref.
16) are shown in Figs. 14 and 15. The model geometries and flow conditions are given in the legend as is the
frequency resolution, Af, and the number of data records, NR, that the spectrum is based on. All of the results
in Fig. 14 were obtained in the Princeton University Mach 3 blowdown tunnel either at Station I (b" ; 1.6cm)
or at Station 2 (4 8z 2.2cm) in the tunnel floor boundary layer. The data in Fig. 15 were obtained in a Mach 5
blowdown tunnel at The University of Texas at Austin. The data in both figures are presented in the commonly
employed form f. G(f)/a vs. f, plotted in linear-log axes, where G(f) is the one-sided, auto-spectral density

function. The choice of plotting axes is an important consideration. Since a, = G(f)df then for visualizing

the contribution of a given frequency range to 4,, linear-linear axes, although awkward, are probably the least
misleading. An alternative approach which has the advantage that the area under a given curve segment is
linearly proportional to the contribution of that frequency range to ua, is to plot f . G(f) vs. f on linear-log
axes. The frequency range of shock oscillation which is characterized by high amplitude fluctuations is then
more evident than when plotted as G(f) vs. f on log-log scales as is done for curve 1 in the inset at the top of
the figure.

However, plotting f . G(f) vs. f does suffer from several drawbacks and care must be taken in the in.
terpretation. Compared to the linear-linear form, the logarithmic representation may mask the low frequency
component which is rejected to zero. Second, maxima in f - G(f) occur at each point where G(f) vs. f in
linear-linear form has a slope of -1. This point has no particular physical meaning and is not always in the dom-
inant frequency range. Third, peaks evident in the original linear-linear plot can be aliased to lower frequencies
leading to misleading interpretations. Normalizing by crl,, to force the area under the curve to unity, can also be
misleading, unless the-true spectrum and the true o have been measured. If there exists a frequency cut-off,
then as the area is forced to unity the low frequency range of the spectrum will be incorrect, even if the original
dimensional spectrum was correct. In the incoming boundary layer and separated flow zones, frequency cut-off
is a pervasive problem, and normalizing by 47p is not recommended. On the other hand at (op)m.x, where a
large fraction of the energy is at low frequency, and is almost certainly captured by the transducer, little error
will be incurred.

In all cases plotted- it can be seen that the shock frequencies are broadband and at relatively low values.
Typically the bandwidth is a few kIfz supporting the statement made earlier that the shock motion is a low
frequency phenomenon. For a given model type, certain trends with changes in geometry or incoming boundary
layer can be seen. In the Mach 5 cylinder study, the center frequency decreases as the cylinder diameter increases
in a fixed boundary layer, and for a fixed diameter cylinder the center frequency increases as the boundary layer
becomes thinner. A similar-trend is seen with the Mach 3 blunt fin flows. With compression ramps the center
frequency decreases as the ramp angle and streamwise extent of separation increase. Conversely, in sharp fin
flows there appears to be little change as the angle cf attack is increased from 12'to 20'. There is currently no
explanation of why these trends occur, nor why in a given boundary layer the spectrum and shock frequency
are functions of model geometry.

Power spectra in the intermittent region of other 2-D flows, in transonic normal shock interaction in diffusers,
and shock-induced separation on-transonic airfoils, and in 3-D flows generated by sharp and blunt fins, all have
similar-characteristics. Even at very high freestream velocities and with thin boundary layers, which generates
extremely small time-scales, 6/U, power spectra indicate low shock frequencies; spectral center frequencies are
typically 2 kHz or less.

Although the range of shock frequencies can be deduced from power spectra, several authors have tried to
isolate the shock motion component of the pressure signal, and determine the dynamics of the shock separately.
A brief description of the techniques employed and some results follow in the next section.

2.1.7 Separation Shock-Wave Zero-Crossing Frequency Estimates

To isolate the-shock component of the pressure signal, several authors -have employed conditional sampling
algorithms [Dolling and Murphy (Ref. 27), Andre.opoulos and Muck (Ref. 28), Narlo (Ref. 29), Dolling and
Smith (Ref. 16)]. Their common feature is the conversion of the pressure signal/Fig. 16a) into a "box-car" of
amplitude unity and varying frequency (Fig. 16b). The time T between consecutive passages of the shock over
the transducer-can be determined and statistics performed to obtain the probability distribution of T, and the

N
mean value T(- I T), where N is the number of periods. It should be noted that I/T. is the shock zero

crossing frequency, f,, not the mean shock frequency. f. is the number of crossings per second of the transducer
N

by the shock wave, whereas the mean shock frequency is L f, where fi-= 1/Ti. Since the pressure signal

is of a turbulent flow, precautions must-be taken to ensure that high-frequency turbulent fluctuations are not
inadvertently counted-as shock waves. This problem, and others, are discussed briefly-below.
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In earlier work (Ref. 27) a single threshold T was used, as indicated in Fig 1a. T was set equal to -T+3ap,
where subscript o refers to properties of the undisturbed boundary layer. T.us, when P. increased above T,
this indicated the start of the shock passage upstream over the transducer. Whc.,,, fell below T this indicated
the end of the shock passage. However, because drift and zero shifts cause small dc offsets from test to test the
results can be inconsistent. Andreopoulos and Muck (Ref. 28) improved on this by "ey-balling" each signal and
choosing T just above the largest fluctuations of the boundary layer fraction of this signal. This technique was
used in the 24°compression ramp flow at Mach 3. T was found-to be approximately 7.76,/Uo. Further, T.
was independent of position in the intermittent region and ramp angle (i.e., independent of downstream flow
conditions). f, was equal to 0.13U,/6o, which the authors claim is the same order as the estimated bursting
frequency of the turbulent boundary layer. This. result, and its implications, is discussed further in Section
2.1.10.

Although "eyeballing" the threshold avoids tile problems noted above, it is subjective and difficult to apply
consistently. However, a more serious problem is that many "false shocks" are counted. Fig. 16 illustrates
the problem. Fig. 16b shows the "ideal" box-car, as judged by eye, for the pressure signal in Fig. 16a. Fig.
16c shows the box-car from the algorithm, in which turbulent fluctuations such- as A and B (Fig. 16a) are
inadvertently counted as shock waves. Because these "shocks" are actually turbulent fluctuations they occur at
high frequency and their inclusion in the box-car drives f, higher. No matter what level T is set at, fluctuations
such as A and B or the series around C (Fig. 16a) will always create false shocks. That this problem is significant
can be seen by locating the value of f, ( 0.13Uz/6o z 3.1kHz) on the corresponding power spectrum in Fig. 14.
f, is indicated by the arrow labelled "STM",-and is around the upper boundary of the shock frequency range.
This problem with the algorithm is also evident in the probability distributions for the shock wave period.
With increased data sampling rate, f,, T,, decreased significantly, from about 1.8 ms to 1.2 ms to 0.4 ms as 's

-increascd from 10 kHz to 20 kHz to 100 kHz. This is indicative of the capturing of progressively more and more
high frequency turbulent fluctuations, which the algorithm cannot distinguish from shock waves.

To avoid this problem an algorithm using two thresholds was developed by Dolling and Narlo (Ref. 30). In
this case, the upper threshold T2 = 7o + 4.5op and the lower one T =-Po. Io calculate T.,, a "window" of
width AP is stepped through the pressure signal in small increments, starting at the minimum in the signal. At
each step, the number of data points in the window is counted. Since the transducers used in these experiments
showed that the pressure fluctuations in the undisturbed boundary layer are distributed normally the position
at which the greatest number of data points occurs brackets T.. The standard deviation, ap0 , of the boundary
layer portion of the signal is then calculated. 7'o + 4 .5 "po was chosen for T2, since the probability of finding
points greater than 4.5Opo above "Fo is very low (i.e., 0.0000068). Hence, pressures above T2 are characteristic of
the flow downstream of the shock, and pressures below T2 are characteristic of the undisturbed boundary layer.
This approach sets T2 consistently just above the largest fluctuations of the boundary layer, and automatically
takes care of d.c. offsets or drift. The process requires no subjective input from the user.

Initially, if P,, < T2, a flag is set "off". The algorithm then checks successive data poi.its. If the first point
is less than T2 and the second point is greater than T2 and the flag is "off", this marks the start of the passage
of a shock. The counter that records the time between successive shock waves is then initialized and the flag is
then set "on". Further crossings of T2 are not counted until P,, is less than TI. Termination of the shock occurs
when this happens, and the flag is reset. As shown in Fig. 16d this process largely eliminates the counting of
turbulent fluctuations as shock-waves.

Distributions of f using this approach are shown in Fig. 17 for cylinder flows at Mach 5. f4 is a maximum
at -z; 0.5 in all cases; about 1.6 kllz for D = 1.27cm and about 1.2 kHz for D = 1.91cm in the 0.54 cm thick
boundary layer. These values are indicated by arrows labelled TTM on their corresponding power spectra in
Fig. 15 and fall close to the center frequency of the spcctrum. Narlo (Ref. 29) also calculated f. using the
single threshold method. These values are indicated by arrows labelled STM in Fig 15 and, consistent with the
ramp results mentioned earlier, are significantly higher than the center frequency. The two-hreshold algorithm
was also used by Dolling and Narlo in Mach 3 blunt fin flows. With only a few measurement stations in the
intermittent zone neither the distribution of f, or (f¢) = could be defined very accurately. For D = 1.27cm
and 2.54 cm (f0), was estimated to be about ' kllz-and 0.7-kHz, respectively. Again, these values fell close
to the power spectra center frequencies (curves 6 and 7, Fig. 14).

However this algorithm introd'ices a new problem. If two shock passages are closely spaced P,, may not fall
-below To before increasing again, ,nd the flag is not-reset. Two shock passages are then counted as only one.
To examine this, and also assess the sensitivity of f,-to the threshold settings, Ti and T2 were systematically
varied. First, with T, = T.o, T2 was varied through a series of values-give by 7' + nap., 3 _< it _< 9. Next, T, was
increased to 7o +3'po and T2 varied as before. With this higher value of T1, P only has to fall back within the
range of the turbulent- boundary layer in order to reset the shock counter, whereas with T, = TP the pressure
must decrease to below the mean value. Some typical results at 0.2 and 0.5 are shown in Fig. 18. At low ,
when relatively long periods of undisturbed boundary layer flow occur between successive shock passages, the
choice of T, is less critical than at higher -f. Also, at higher values of y, when T, = 75, + 3apo, T2 must-be set
significantly higher in order to avoid turbulent fluctuations-being counted as shock waves (i.e., if T, and T2 are
tooclose the method becomes similar to a single threshold- method and has similar problems). If T2 is set 3apo
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above T or higher, f: is then relatively insensitive to further increases in T2.
it is evident that although f, cannot be pinpointed precisely, it can be bracketed within a narrow range. The

lower boundary of the range corresponds to T, = 77, T2 = 7Po + 4.5apo since this requires that P. fall below ,
between shock waves. The upper boundery is set by T, = P. + 3apo., T2 -- + Gap,. With these as bounds,
f. is in the range 0.55-0.65 kHz for -1 ,2. At the higher y, the variation is larger, 1.2-1.5 k1z.

In sumwary, results from single threshold methods give unrealistically high estimates of f,. The two-threshold
results are more representative and show that with physically sensible choice of T and T2 , f, can be bracketed
within a fairly narrow range. Quantitatively, the values of (f). from the two-threshold algorithm correlate
reasonably well with the spectrum center frequency suggesting either technique could be used to estimate the
maximum zero crossing frequency. However, statistical information concerning Ti and f, can only be provided
by conditional sampling algorithms.

2.1.8 Separation Shock Wave Period, Frequency and Persistence Distributions

From the box-car signals, probability density distributions or histograms of the shock wave period, T, frequency
f,, and persistence, P1 can be calculated. The persistence is defined as the time the signal stays 'hi' (i.e., the
time-span that a given box-car has the value unity). Such distributions have been calculated by Nordyke (Ref.
24) in a 28*, Mach 5 compression ramp flow. Typical distributions of T, f, and P based on about 1200 shock
passages are shown in Figures 19, 20, and 21 respectively. All three were obtained from a transducer located at
7 z .63.

All three distributions are highly skewed. The most probable shock period of about 3 0 0 ps is approximately
one quarter of the value of the mean period, T,,(= 1050ps). The most probable persistence is about 50ps with
a mean value, Pm of 650jps (Note that Pm/Tm = .62, nearly equal to the calculated -1 at that station, which
provides a check on the algorithm). The shock frequency distribution is truncated below 167 Hz because the
algorithm did not store shock periods greater than 6000ps. This frequency distribution shows-that the most
probable frequencies are below about 1 kHz, which agrees well with-the power spectrum at the same location
which-is shown in Fig. 22.

2.1.9 Space-Time Correlations/Shock Speeds in Intermittent Region

Longitudinal space-time correlations R,(C,r) calculated by Muck et A. (Ref. 18) in a Mach-3, 24°compression
ramp flow are shown in Fig. 23. The spacing, between transducers varied from 0.23-0.696. although only
curves for the smaller value are shown here. The case X/4o = -2.18, has the upstream transducer at (qp),,
and shows the features of such correlations and the difficulties of- interpretation. One source of difficulty is
that two different physical phenomena occur together. There is shock motion in the upstream and downstream
directions superposed on convective transport of turbulent eddies largely in the downstream direction only. This
leads to difficulties in interpreting the values of r at which maxima in R, occur.

The correlation at X16, = -2.18 has two maxima; one at r t - 6 0ps and one at 7 r +10ps. The
latter corresponds to turbulent eddy convection downstream. This is evident from correlations in the incoming
boundary layer since the maximum in R, is at the same-positive r. It was suggested that the maximum at
negative -r is "probably due to the shock motion". This has been confirmed by Baade and-Dolling (Ref. 31).
In this case, correlations were performed on the original signals, the box-cars obtained from the two-threshold
algorithm, and a set of model signals. Tie model signals were either "nested" square waves (as would be
generated by the box-car algorithm) with variable-rise and fall times, T, and /t (Fig. 24a) or "sequential"
square waves with the delay time, Td fixed, for a given pair of waves but varying through the signal (Fig. 24b).
These two signals have different cross-correlations with different physical interpretations. For the nested waves,
maxima in R, occur at-values of r close to minima in T, and T! (Fig. 24c) and not at an average (or broadband)
value of Td as occurs-for the sequential signals (Fig. 24d). Thus, although correlations of the box-car signals
from the TTM reveal a maximum in R,, at positive r which corresponds to downstream motion of the shock
wave, in addition to a maximum at negative r corresponding to upstream motion, the shock speeds calculated
from these values of -r and-C are essentially maximum values, not broadband values.

In the Mach 5 cylinder interactions studied by Baade and Dolling the maximum upstream and downstream
shock speeds deduced from cross-correlations of the box-cars were about 100 m/s. In the Mach 5 facility, 100
m/s is about 0.14 U,,,,. At Mach 3, in Ref. 18, only cross-correlations of the oriinal signals were made. Since the
shock-induced fluctuations are-also "nested" then the maximum in R4, at negative r is also heavily weighted
towards the minimum T, (maximum upstream velocity) rather than the broadband value. Further, it was
noted by Dolling and Baade that correlations on the entire signal result in a somewhat higher 1 (and smaller
maximum velocity) than on the corresponding box-cars. Bearing this in mind, for a spacing of 0.236.( 5.5mm)
the maximum in R, at a r of -60ps corresponds to 92ms(; .16U).

In a more direct attempt to calculate shock speeds, Fig. 24e, Andreopoulos and Muck (Ref. 28) identified
individual pairs of nested box-cars from the 24°compression ramp flow and performed statistics on T, and-T.
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The objective was to calculate the probability distribution for the shock speed but the small number of samples
(only 64) precluded an accurate result (Fig. 25). The calculated speeds ranged from 0.05 -0.8 U., with a mean
of about 0.15 U.. Upstream and downstream shock speeds were about the same order.

Shock speeds in both upstream and downstream- directions calculated in the same way by Nordyke (Ref.
24) in a 280 Mach 5 compression ramp flow (at y ; 0.63) are shown in Fig. 25. The most probable speeds
are a small fraction of U. (=2400ft/s) and there is no evidence of any major differences between upstream and
downstream values. The table below gives the mean speeds for the transducer pair at 3 different stations in the
intermittent region.

Intennittency Upstream Downstream
Channel I/Channel 2 ft/s ft/s

.44/.70 56 60

.21/.36 90 88

.14/.24 121 123

The upstream and downstream values are essentially the same with some evidence of a decrease with increas-
ing intermittency. More detailed data at more streamwise stations and at different flow conditions are needed
in order to draw conclusions about this result and the the validity of U, as a normalizer.

2.1.10 Mechanism Driving Separation Shock Motion

In their Mach- 3 compression ramp study Andreopoulos and Muck (Ref. 28) reported that the mean shock
period, Tm, was independent of position in the intermittent region-and independent of the ramp angle. The
value of Tm corresponded to a value of f,(- 1/T ) of 0.13Uo/o. The authors claimed that this was the same
order as the estimated bursting frequency in the incoming boundary layer. From this finding, they concluded
that "the incoming boundary layer is largely responsible for the shock-wave motion". They also argued that the
measured shock speeds were the same order as velocity fluctuations in the flowfield and that this "represents
further evidence that the turbulence of the incoming boundary layer is largely responsible for the shock motion".

To this author, in the absence of measurements providing a direct correlation this seems to be a questionable
conclusion at this stage. If the shock frequency is controlled by turbulent bursts and/or convected by velocity
fluctuations then it might be anticipated that in a particular incoming boundary layer the shock zero crossing
frequency, f,, and streamwise length scale of its motion would be fixed. This is not the case. The spectral data,
when plotted as f. G(f)/a (curves 1, 2 and 3 of Fig. 14) show that the band of shock frequencies increases as
the ramp angle decreases (in a fixed boundary layer). Also as noted earlier, for a circular cylinder of diameter
D, the shock frequency f, decreases as D increases, and the shock motion length scale increases as D increases,
all in a fixed-incoming boundary layer. Further, as shown in Ref. 12, the one-threshold algorithm-used in Ref.
28 probably leads to overestimates in f, due to its inability to discriminate between shock-induced pressure
fluctuations and turbulent fluctuations. It is probable that a two-threshold approach would yield values of f'
of about half of those quoted in Ref. 28.

Andreopoulos and Muck's conclusions are also not supported by the results of Tran (Ref. 32) obtained using
the VITA (Variable -Interval Time Averaging) technique. Tran's work-was done in the same Mach 3 blowdown
facility in the same boundary layer but with a 20°compression ramp rather than a 24°model. One transducer
was placed on the upstream influeace line and the other further upstream in the incoming boundary layer. The
upstream channel was used as a trigger and sampling was carried out on the downstream one. The threshold
setting (which determines if an 'event' has occurred) was fixed and integration times varied from-16ps to 64ps.
The latter had little effect-on the magnitude of the downstream signals. Tran found little correlation between
events detected on-the upstream channel and the shock-induced pressure-pulses on the downstream channel.
Close observation showed that "in many instances, the details of the pressure fluctuations of the upstream signal
were preserved at the downstream station at a time delay corresponding approximately to the time that it would
take for the large-scale structure to travel between the two stations." Tran concluded that the pressure pulses
in the intermittent region were independent of the large-scale structures in the upstream boundary layer which
are convected into the interaction.

The results of the VITA analysis just discussed must also be treated witn a certain amount of caution. The
shock motion may be 'receptive' only to certain pressure-carrying eddies entering-the interaction. The VITA
technique most probably does detect these events but may average them with many other types of 'events' which
could mask any correlation with the downstream shock motion. Further, in Tran's experiment only a single
transducer was placed in the intermittent region, close to its upstream edge. It is quite possible that the shock
was moving-upstream and downstream in response to the incoming turbulent eddies but remained downstream
of the transducer whose output was used to calculate the ensembles. It might be more appropriate to use the
large pressure rise on the downstream channel as a trigger and ensemble iverage on the upstream channel in the
undisturbed boundary layer. In this way, the trigger is a well defined and well-understood event, and ensemble
averages on-the upstream channel are more easily interpreted.
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As a final comment, it is not necessary that the shock motion be connected with transport phenomena; the
shock is an interface and its propagation speed depends on conditions in the regions upstream and downstream
of it. Using this idea, a very simple 1-D analysis relating the shock speeds to the pressures upstream and
downstream of the shock, was developed by Dolling and Smith (Ref. 16). It predicted shock speeds that agreed
reasonably well with the measured ones. The calculated average downstream speed was also slightly higher
than the upstream speed, a feature observed experimentally. At the present stage, the physical idea behind
this, namely that either local or global pressure fluctuations in the separated flow drive the shock wave, must
also be treated with considerable caution. No direct connection between the shock motion and separated flow
pressure fluctuations has yet been established.

In-transonic diffuser flow- oscillations, characterized by a normal shock/turbulent boundary layer interaction
combined with a subsonic, adverse pressure gradient region behind the shock, Boger et al. (Ref. 5) cite evidence
suggesting that strong shock oscillations are sustained by a feedback loop of upstream propagating acoustic
waves and downstream-convected perturbations in the boundary layer. In the ramp flow, the separation bubble
contains a subsonic region- in which a similar mechanism is feasible. To the best of the author's knowledge this
has never been investigated.

In summary, other than in the diffuser problem just discussed, it must be stated-that the driving mechanism
of the separation shock motion is not known for any of the flows discussed and is a fruitful area for research.

2.1.11 Separated Flow Region

At 'S' or just downstream of it, the fluctuation amplitude distributions are again essentially Gaussian. If the
separation length is large enough, both orp and F. reach constant plateau levels [Chyu and Hanly (Rcf. 14,
Coe et al. (Ref. 15)]. Compared to the undisturbed attached flow, both ap and ar/p, are significantly higher.
Longitudinal space-time correlations for the Mach 3, 24°ramp are shown in Fig. 27. In this case, the extent
of separation was relatively small,-and the flow-undergoes a continuous compression from separation through
reattachment. (R,,)., is significantly less than in the upstream attached flow, and decreases much more rapidly
with transducer separation distance suggesting a stronger contribution from high frequency (i.e., less correlated)
fluctuations. An obvious feature is the double peak shape. However, the reasons for the second small peak at the
larger positive r are not clear. Estimates of the broadband convection velocity from the first maxima at positive
r gives a value of 0.6U., or 0.8U., where U, is the local freestream velocity (deduced assuming a 10*deflection
through the separation-shock). This agrees well with attached flow results. Although reverse flow occurs, the
fluctuations are-much more highly correlated in the-streamwise direction, and eddies moving downstream are
the major contributors. For the closest spacing, a peak is just discernible at r z -lOOps but P,, is low-and of
limited accuracy. Assuming that it reflects a physical feature present in the flow, it corresponds to an upstream
convection velocity of about 55 m/s -which is within a few percent of the maximum reversed -flow velocities
measured by Settles et al. (Ref. 33) in the same flowfield.

Correlations further downstream (Ref. 23) show that the maximum correlation at positive r-increases, and
the maximum at negative r disappears. It appears that convective phenomena dominate in the separated flow.
Convection velocities at different separations were the same within the temporal resolution of the-experiment.
Spanwise correlations were symmetric about tle T = 0 axis with a peak correlation coefficient of about 0.4. Thus,
the eddies are not strongly correlated spanwise and the time-averaged flow can be regarded as uniform. These
observations are in basic agreement with the work of Coe et al. Narrow-band convection velocities determined
in the separated flow upstream of a 45°axisymnmetric flare at Mach 2 varied from 0.2U, (at fS/Ue = 0.06) to
a maximum of about 0.8U, (at f6U = 0.8). Upstream- convection was not detected. Clearly, broad-band
velocities cannot be considered representative and the variation with frequency implies "that the predominant
turbulence at different frequencies between 0.03 < f5/U < 0.8 is generated at different levels of the boundary
layer, ranging from slightly above the zero velocity line to the free shear layer."

Roos-(Ref. 34) obtained similar correlations in studies of transonic airfoil buffeting. An 11% thick, single
element Whitcomb supercritical airfoil and a conventional NACA 00012 airfoil were-tested. For fully separated
flow from the shock to the trailing edge, peak time delays were positive, indicative of disturbances moving
downstream. By band-pass filtering before cross-correlation, the frequency dependence of the convection speeds
was established. The results were similar to those of Coe et al. A more complex disturbance propagation pattern
was found when shock-induced separation was followed by reattachment. The cross-correlations show upstream
and downstream propagation of disturbances, indicative of acoustic and convective modes. In this case, the
higher frequencies travelled downstream with the frequency-dependent speed characteristic-of tle convective
mode, and the lower frequencies showed a mixed behavior.

Coe et al. tried to -determine the extent of the interaction between the shock oscillation and pressure
fluctuations in the separated flow by simultaneously sampling the signals in both regions and calculating corre-
lations and coherence functions. The results showed that the fluctuations were related only at low frequencies,
f6/Uo < 0.04 (in this case 200 lz). The coherence at these low frequencies decreased rapidly downstream of
the shock, but a coherence of about 0.2 persisted well into the separated region. Negative phase angles showed
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that the convection of the mean related turbulence was upstream, indicating that at low frequencies turbulence
in the separated flow has a strong influence on the shock oscillation.

Sajben and Kroutil (Ref. 4) reached a qualitatively similar conclusion in studies of the effect of initial
boundary layer thickness on transonic diffuser flows. They observed that the turbulence in the rapidly thickening

upper wall boundary layer (downstream of the shock) was associated with frequencies that decrease rapidly
streamwise. At the end of the diffuser they could become low enough to be comparable to the shock oscillation

frequency. Although the small bubble-type ramp flows do not appear to share similar spectral features, this
idea has never been seriously examined.

Appropri'ite correlating parameters for the power spectra are not entirely clear. Chyu and Hanly (Ref. 14)

normalized the power and frequency axes by Uoo/q2" and 6*/Uoo respectively and obtained good correlation
for f,*/U,,o < 0.2 (above that value it was M.. dependent). Coe et al. tested an assortment of 2-D and

axisymmetric models and examined many normalizing parameters. Overall their best correlation was obtained
using Uoo/q2,6 and 8/Uoo. Dolling and Or (Ref. 35) have tried to correlate Mach 3 compression ramp data using
the same parameters. The spectra had the same shape and roll-off rate over much of the frequency range but

fell consistently below Coe's results.

2.1.12 Reattachment and Outgoing Boundary Layer

There exist few data near reattachment or in the outgoing boundary layer, largely because of tunnel constraints.
Models such as compression ramps have to be long enough to avoid trailing-edge effects on reattachment, but
short enough to avoid tunnel blockage. Generally outgoing boundary-layer lengths are short. In compression
ramp flows up/lT increases towards reattachment (Fig. 28). Chyu and Hanly (Ref. 14) report the same
behavior in axisymmetric flare studies, although these data must be interpreted with caution since the cut-off
frequency was low. Downstream of R, up progressively decreases, and continues to do so after T. reaches a
constant value. The slow readjustment is seen-in the skewness and flatness coefficients (Fig. 29). The skewness
passes through zero about 36° from the corner; close to where 75, becomes constant. It then decreases and-levels
off at-around -0.2. -It is difficult to judge whether it remains constant or increases slowly back to zero. The
results for the flatness are equally confusing. At the downstream boundary of the measurement region, the value
is about 3 and apparently increasing. The power spectra (Ref. 36) are suggestive of some unusual features in the
outgoing boundary layer. Downstream of R, a "bulge" developed in the spectrum; at the furthest downstream
station, it spanned the range of 5-12 kHz, corresponding to energetic structures of streamwise extent about 26o.

Selig et al. (Ref. 37) made simultaneous wall pressure and mass flux measurements in the same compression
ramp flow. Although correlations between the two signals were low and appeared to be dominated by tunnel
noise, the mass flux measurements revealed some interesting results. From- the -wall to close to the-middle
of the boundary layer, probability density distributions centered around a single value equal to the incoming
freestream mass flux. Further out than the middle of the boundary layer, the distribution centered-around a
single value equal to the mass flux downstream of the interaction. In the middle, the distributions were bimodal,
indicative of an intermittent signal with peaks at both values. Similar findings have been reported by Hayakawa
et al. (Ref. 38). Selig et al. suggest that this might be caused either by Taylor-Gortler vortices or low-speed
eruptions from the separation bubble and suggest that the latter is the more likely cause. In support, they cite
the microsecond schlieren photographs of -Ardonceau (Ref. 39) which appear to show a "quasi-periodic" vortex
sheet emerging from the separated flow and travelling downstream.

These observations agree qualitatively with the turbulence measurements of Lee (Ref. 40), Delery (Ref.
41) and Ardonceau (Ref. 39) although in some cases different conclusions are drawn from them. Lee made
constant-temperature hot-wire measurements in 8, 13and 18°compression ramp flows at M,, = 2.25. These
angles correspond to attached flow, incipient separation and separated flow respectively. The maxima in the
power spectra were located near 25 kHz before and after the interaction, inferring large-scale structures of
0[26] in extent in both cases. Some evidence of unsteadiness also was noted. The profiles close to the wall
downstream of the interaction exhibited an intense peak around 1-10 kIlz; asssuming that transport phenomena
are responsible, this corresponds to flow structures up to 55e in extent. Lee concluded- that this was not
turbulence, but rather was due to "a global displacement of the boundary layer linked with- the separation
instability."

Delery used a laser velocimeter in three shock-induced separated flows in a 2-D transonic channel. The
flows corresponded to incipient separation, well separated, and a case with a very large-separated bubble.
The downstream relaxation to a new equilibrium state was very gradual due to the !ong lifetime of the large
structures in the outgoing flow which formed near the shock root,-a region of intense turbulence production.
Ardonceau made turbulence measurements in the same flows as Lee, using a laser velocimeter and a constant
temperature hot wire. The longitudinal properties of the turbulent structure were investigated through spetal
analysis of the hot-wire signal. It was concluded that a-large amount of turbulent energy was contained in
large-scale structures. A typical scale is 26o in-the stream direction and-15o spanwise. As Lee's more qualitative
work suggested, these structures do not lose their coherence during the interaction with the mean velocity field.
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The corresponding probability density distributions for the shock frequency, f4, are shown in Figure 34.
Since f = 11T. the distributions of f4 and T are not linearly related, so the inverse of the mean period is not
the mean frequency, 7. The latter was defined earlier. The distributions are also plotted as (NiINT) x (11W)
but unlike the shock period distributions W(- f - fjl) is not constant. It decreases as Ti increases. The
curves, particularly those for the tunnel floor tests exhibit considerable scatter. The mean frequencies, 7, are
indicated by the vertical arrows. Although the range of possible shock frequencies is quite broad, low frequencies
(typically < 1-2 kHz) are most probable in all cases. For a fixed D, the mean and most probable frequencies
decrease in the thicker boundary layer.

Shock speeds and their distributions have been calculated by Dolling and Smith (Ref. 16) and Baade and
Dolling (Ref. 31) in Macl 5 cylinder-induced flows. The shock speeds were calculated directly from individual
pairs of nested 'box-car' signals as illustrated earlier in Fig. 24e. In Refs. 16 and 31 the two-threshold algorithm
was used to generate the box. car signal and at any given station, up to 750 pairs of nested box-cars were
examined. Typical probability distributions of the shock speeds in both directions for two different diameter
cylinders in the same boundary layer (6° = 1.62cm) are shown in Figures 35 and 36. U is the shock speed,
N is the number of occurrences of a given speed and NT is. the total number of events. The different curves
correspond to different positions in the intermittent region and span the range 0.12 _< - < 0.87. Mean upstream
and downstream shock speedr for the different positions fell in the ranges 0.06 < 17,/U., < 0.07 for the 1.27
cm case and 0.06 _< U./U. < 0.13 for the 1.91 cm case with no trends with intermittency. Downstream mean
shock speeds were higher than upstream; 10-15% higher for the 1.27 cm cylinder and 15-30% higher for the 1.91
cm cylinder. The overall upstream and downstream mean shock speeds for the various cases, (i.e., the average
value at all values of -) including results from additional tests in a thinner boundary layer are given in the table
below. Fewer data records were taken in the latter cases, so the average values are based on only 70-200 shock
passages per station, rather than 400-750 for the thicker boundary layer cases. In summary, it appears that
shock speeds are low and-that position in the intermittent region, incoming boundary layer and model diameter
have a relatively small affect on the values.

Overall Mean Shock Speeds

i Overall Shock Speed I D = 1.91 cm I D = 1.27 cm 6 (cm)

Upstream .068 U, .062 U,. 1.62
Downstream .078 U . .067 U,,, 1.62
Upstream .056 Us, .049 U. 0.54
Downstream .074 U . .055 U,, -0.54

It is possible that the discrepancy between the mean speeds in the ramp and cylinder studies is partly due
to the smaller number of samples in the ramp study but it could also be due to-the use of a single-threshold
algorithm to generate the box-cars which biases the results to shorter times and hence higher speeds. At this
stage, as noted earlier, there is no reason to assume that U.. is an appropriate normalizer. Even so, it is clear
that in two different flows the shock speeds are a small fraction of U... No satisfactory physical explanation for
this result is available.

3.2.1 Separated Flow

In 3-D flow, a large variety of separated flow structures can exist depending on the model geometry, orientation,
shock strength and incoming flow parameters such as Reynolds number and Mach number. In blunt fin and
cylinder-induced flows, the qualitative structure can best be understood in terms ofvortex systems; these include
vortices that form in the upstream separated flow, the stretching of these around the leading edge (or cylinder)
in a horseshoe shape, and in cylinder flows, the near-wake spiral vortices. This pattern is common to both
laminar and turbulent flows, as-well as to Mach numbers up to the hypersonic range. How many vortices occur
appears to be primarily a function of Reynolds number, certain dimensionless parameters, and flow type [Sedney
(Ref. 47)]. Since these vortices generate very-large streamwise-and spanwise pressure gradients it is obvious

-they they will play a dominant role in the wall pressure fluctuation behavior. This-behavior is likely to be very
complex.

There are very few results availabie. As seen in figure 31, for flow upstrearr. of a blunt fin, ap continues to
increase downstream of'S'. It reaches a second peak whose magnitude is of the same order as that caused by the
unsteady separation shock. The peak in-the intermittent region maintains its position relative to the-upstream
influence line, the second peak is swept back and crosses underneath the inviscid shock at X/D = 3 (Figure
32). On center-line the second peak is about one diameter upstream of the fin leading edge, and corresponds
approximately to the upstream limit of the embedded supersonic reversed flow region predicted in a numerical
study by -Hung and Buning (Ref. 48). As seen in Figure 32, the peak decays rapidly and further spanwise
than X/D = 4 is no longer detectable. A third peak of greater magnitude than the other two occurs near the
root of the shock generator leading edge, at X/D -0.1 to - 0.2. It is not clear if this is generated by-the
small secondary vortex at- the generator root or by some other mechanism. All of these data were deduced from
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measurements on a single channel; no space-time correlation data are available. Similarly no published data are
available to provide information on the spectral content of the signal between 'S"and the leading edge.

3.3 Sharp Fin Flows

The only known data arc those of Tan et al. (Ref 42), Tran et al. (Ref. 43) and Tran (Ref. 32). Tran made
detailed measurements along a single survey line in the undisturbed freestream direction for fin angles of attack,
a, of 100, 120, 16and 20 °. Distributions of the normalized mean wall pressure and normalized-up are shown
in Figure 37. The spanwise location of the transducers is shown in the inset. On the figures 'UP refers to the
upstream influence line and 'C' refers to the line of coalescence of the surface streaks (generally considered as a
line of separation). Both 'U' and '0' were obtained using the kerosene-lampblack method.

For the lowest inviscid shock strength (a = 10') the pressure signals were not intermittent and were Gaussian
throughout the entire region surveyed. The distribution of up shows no discernible peak. On the basis of earlier
work by Debieve and LaCharme (Ref. 17), amongst others, Tran states that this case "may be viewed as
reflecting the amplification of turbulence through a region of relatively mild adverse pressure gradient". With
increased shock strength, the rise in ap becomes more abrupt and a peak develops. It is just discernible at 12°.
The pressure signals show that this development is associated with development of an unsteady shock structure.
Hence the pressure signal is intermittent, the same as in other 2-D and 3-D flows. Whether or not this flow is
separated has been the subject of some controversy in recent years. To this author the evidence suggests that
the development of an intermittent pressure signal is associated with the onset of separation. Whether this is
the case in 2-D flows is not known since there exists no P.(t) data for boundary layers subjected to continuous
compressions, as for example, on a concave surface.

As in 2-D flows, (up) . occurs upstream of 'C'. Similar to large scale 2-D separated flows, between 'C' and
the trace of the inviscid-shock up is essentially constant (as is 7Y,) although, as expected, the value depends on
the inviscid shock strength. Downstream of the shock, up decreases. -From extrapolations of the data in Figure
37, Tran estimated that a new equilibrium value would be reached 6 - 76o downstream of the inviscid shock.

Using a coordinate stretching technique, which makes use of the fact that the flowfield footprint is quasi-
conical, Tran correlated the data from sharp fin, semi-cone and swept compression ramp flows (Figures 38 and
39). For a given inviscid shock strength, varying the geometry has little effect on the distribution of 1',,/T,
and p/Pw, at least from X. to the inviscid shock location. The infe.rence is that the inviscid shock strength is
the major governing parameter for bsuch swept shock interactions, and that the shock location- is the reference
point from which comparisons should be made.

Tran also developed a procedure for correlating (ap),, in the intermittent region of 2-D and sharp fin flows.
The data were correlated when plotted as (up/upo) as a function of-d(7v fP,,o)d(XsIAS) where AS is the
distance along the shock wave from the fin leading edge (Fig. 39). Although tentative (the degree of overlap
between 2-D and 3-D flow was small) the result has interesting implications. First, in the sharp fin flow, AS
develops quasi-conically and, as indicated by the correlating parameter, the boundary layer thickness does not
occur. This-could be construed as evidence that the shock is not convected by the large scale structures in the
incoming flow.

Power spectra at 8 stations along the survey line for a-= 160 and 20" have been reported by Tran. Both
cases have common features. Between UI and C the shock-induced fluctuations are the major contributor to up
and are centered around 2 kItz (Figure 40). At C, the low frequency content decreases and the higher frequency
range increases. In the plateau region of the up distribution, the shape is unchanged with the higher frequency
range centered-around 10 kHz. Downstream of the inviscid shock, the shape of the spectra relaxes towards that
of the incoming boundary layer. In the intermittent region these results are qualitatively the same as in 2-D
flows, and other 3.D flows. The shock frequency of about 2 klIz is in the same range as blunt- fin flows, but
a factor of about 4 higher than in the compression ramp (all for the same incoming freestream and boundary
layer).

In the fin flows, the shock front appears to ripple less-than in 2-D ramp flows. Space.time corielations were
made by Tran alongUI for both cases. -Figure 41 shows the maxima of the space-time correlations as a function
of transducer spacing. For close spacings, the signals are highly correlated for the swept flow; for the ramp it has
already dropped significantly at /6o = 1. For larger spacings, the correlation is essentially zero for the ramp,
but for the swept case is still relatively significant even at /6 = 3. The corrsponding plots of the coherence
function are shown in Figure 42. For the swept case, the high frequency components drop off rapidly while
the low-frequency components (due to shock oscillation) remain highly correlated. The ramp data demonstrate
clearly the uncorrelated shock front rippling motion.

In addition to the 20"ramp study mentioned earlier, Tran also applied the VITA technique near tie interac-
tion start in the sharp fin flows. The transducer configuration was similar;,one in the undisturbed and the other
on the upstream influence line. The same findings as reported- for the 2-D flow were observed here. Similar
reservations also apply as discussed earlier.

-~-- - - - - - -- - - - - - - - - - - - - - - - - - - -
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4. SUGGESTIONS FOR FUTURE WORK

4.1 Driving Mechanism

The single most important question from a fundamental point of view is that of the mechanism driving the
shock motion. Identifying the source of the unsteadiness is important on two counts. The first count concerns
numerical modelling. Given a powerful enough computer, appropriate algorithrs, and a physically accurate
turbulence model, there is no reason to suppose that 3-D, time-accurate Navier-Stokes codes cannot be used
to predict the phenomenon. This is probably not likely in the near future. If the mechanism was understood
then it might prove possible to devise simpler models which do not require such a sophisticated, and expensive
approach. The second count concerns controlling the shock motion, or eliminating it altogether. This calls
for some understanding of the basic physics. In the author's view, considering the status of 3-D, turbulent,
separated shock-boundary layer interaction computations, it is more likely that the physical mechanism will be
identified through experiment than through calculation. This is a challenging task and is made more complex
by the possibility that the mechanism may differ from one flowfield to another.

In the author's own laboratory some work is being done on this topic. Some current data have shown that
ensemble-averaged pressures under the separated shear layer in a compression ramp flow rise and fall as the
separation shock wave moves downstream and upstream respectively (Ref. 49). One question, not answered by
these data, is whether the downstream pressure changes are a result of, or the cause of, the shock motion. -In a
new experiment underway, pressure transducers are placed in the intermittent region, close to its downstream
boundary, and further downstream under the separated shear- layer. The same experiment is being done in
interactions induced by compression ramps and circular cylinders. In the analysis, those occasions when the
shock changes its direction from downstream to upstream are detected. Pressures recorded by the downstream
transducers are ensemble-averaged over a large number of these direction-change events. The objective is to
determine if-the decrease in pressure under the shear layer precedes or follows the shock direction change.

In a second experiment, transducers are located in- the incoming, boundary layer and- in the intermittent
region. As the shock crosses the downstream transducer, ensemble averages are calculated on the upstream
channel. The objective is to determine whether the shock motion is preceded by "events" in -the incoming
boundary layer. It is possible that the shock is "receptive" to certain types of incoming turbulent eddies. The
ensemble-averages should indicate whether shock motion is preceded by "pressure-carrying" eddies with large
amplitude fluctuations. This analysis differs from the VITA technique, as used by Tran and discussed in Section
2.1.10. These events in the incoming boundary layer were detected from the VITA signal and averaging done
on the downstream channel. The new technique avoids the difficulties discussed earlier. At the time of writing,
the experiments are done, but the analysis is not completed.

4.2 Swept Flowfields

-Other than the -work of Tran (Ref. 32), nearly all of the measurements have been made in nominally 2-D
flows, or on the plane of symmetry in such 3-D flows as those generated by blunt fins or circular cylinders. The
qualitative and quantitative character of the shock dynamics in swept flows is largely unknown. Considering that
so many of the interactive flows of engineering interest are swept, one example being the side wall interactions in
inlets, this lack of attention is somewhat surprising. There are some very interesting questions to be addressed
For example, using the terminology defined earlier it is known that the separation shock motion occurs in the
region bounded by X. and 'S'. In flows-such as those generated by sharp fins at angle of attack, or by highly
swept compression ramps the flowfields are essentially conically symmetric. The upstream influence line (i.e.,
X0), the separation linerS' and the trace of the inviscid shock on the test surface lie along rays emanating from
either the fin leading edge (or ramp apex) or a virtual origin close to the latter. Wall pressure distributions
can be collapsed in conical coordinates. Hence the distance from Xo to 'S' increases linearly with increasing
spanwise distance. Whether the separation shock continues to move over this ever-increasing distance and if
it does, at what frequencies and speeds, are intriguing questions whoe -answers are unknown. In fact, these
questions may be premature, or inappropriate, since even qualitative features of the unsteady shock structure
and its dynamics are unknown. Whether there exists an unsteady separation shock with intermittent separation
at all spanwise stations, or whether the flowfield structure changes at large distances from the leading edge (or
apex) are- unknown. Whether the swept separation shock 'flaps' in some coherent fashion with a definable
large scale wavelength, or simply undergoes small-scale local rippling along its length are unknown. Answers to
such questions are inherently related to the mechanism responsible, be it the turbulence of the local incoming
boundary layer or oscillations or instabilities in the large scale vortical separated flow structure in the interaction
itself. Clearly, much interesting work remains to be done.

-i- , - - -- -- , , ,
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'THREE-DIMENSIONAL SUPERSONIC AND HYPERSONIC FLOWS INCLUDING SEPARA11ON"

REACTING FLOWS

by

George S. Deiwert and Graham V. Candler
Aerothermodynamics Branch

NASA Ames Research Center, Moffett Field, California 94035
United States

SUMMARY

Features of chemically reacting separated hypersonic flows are identified and issues concerning their analysis and simulation
are discussed. Emphasis is placed on flows of high temperature dissociating and ionizing air and current methods for studying and
characterizing these flows, including separation, ae reviewed. The aeroassist orbital transfer vehicle and its flight trajectory are used
for illustration, Thenmochemical nonequilibrium phenomena are emphasized and extension of continuum analysis to the high altitude
slip-flow regime is considered.

SYMBOLS

a Speed of sound.
Aim Constants fo,,use in equilibrium reaction constant.
A, Constant used in Millikan and White vibrational relaxation model, see (3.37).
A,, B,, C, Constants used in Blottuer viscosity model, see (3.29).
A', B' Jacobians of F and G', see (4.13).
A', AL Flux-split Jacobians of F'.
B4, B_' Flux.split Jacobians of '.
c, Mass concentration of species s, c, = po/p.
c Thermal speed of species s, s:e (3.41).
ct,  Mass-averaged specific heat at constant pressure.
cv Mass-averaged specific heat at constant volume.
c, Translational-rotational specific heat at constant volume of species s.
cVtt S Translational specific heat at constant volume of species s.
cvm ,, Rota:ional specific heat at constant volume of species s.
, b 5 Vibrational specific heat at constant volume of species a.

C Jacobian of W with respect to U.
CA, CA' Jacobians used in diagonalization of A', see (4.15).
Cf.,  Constant for use in the Arrhenius form of reaction rates, see (3.51).
D Diffusion coefficient of uncharged species.
VS Diffusion coefficient of species s.
d Molecular diameter of species s.
e Electron charge.
et Electron translational energy per unit mass.
eel t Electronic energy of species s per unit mass, see (3.26).
e., Vibrational energy per unit mass of species a.
e'*,(T) Vibrational energy per unit mass of species a at the local T.
B Total energy per unit volume.
Et Electron translational energy per unit volume.
AS Vibrational energy per unit volume of species s.
E. Total energy per unit volume of species.s.
Ell Electric field in the i direction.
F, G Flux vectors in the x and y directions.
P', G' Rotated flux vectors in the e and nI directions, see (4.7).
F1, F Inviscid and viscous components of F'.

04 Inviscid and viscous components of G'.
gi, Degeneracy of electronic states for state i of species a, see (3.26).
h. Entltalpy per unit mass of species s, see (3.25).
h-I Heat of formation of species 8.
s, f Indices used for vector components and also to denote grid points.
k Boltzmann conetant.
kf,, Forward reaction rate of reaction m, see (3.51).
kb, Backward react.n rate of reaction m, see (3.51).
K,", Equilibrium r.,ptant of reaction m, see (3.51).
Kn Knudsen number.
Cc Lewis number, see (3.33).
M Mass-averaged atomic weight.
M Mach number.
M, Atomic weight of species s.
n Number of species or time level of computation.

N, Number density of species 8,
N Avogadro's number.
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p Pressure.
p Species s partial pressure.
Psi Momentum transfer rate of species s in direction i.
Pr Probability of vibration energy transfer, see (3.47).
qj Translational-rotational heat conduction in direction].
qt Electron translational heat conduction in direction j,
qgf Total heat conduction in direction].
Sq, Vibrational heat conduction of species a in direction].
QV3 Vibrational energy transfer rate of species a.
Qt-V$ Electron-vibration energy transfer rate of species s.
Qr- Translation-electron energy transfer rate.
Q'-v$ Translation-vibration energy transfer rate of species s.
SQ-,,$ Vibration-vibration energy transfer rate of species s.
rn Nose radius.
R Gas constant.
7? Reaction, see (3.42).
RA Rotation matrix.
Re Reynolds number based on nose radius or total length.
_R3 Gas constant of species s.

R Mass-averaged gas constant.
S Jacobian of V with respect to U.
SS Exponent for use in the diffusion model of vibrational relaxation, see (3.39).
t Time.
T Translational-rotational temperature.
T, Electron translational temperature.
!rw Vibrational temperature of species s.
T Average temperature for use in reaction rates.
u, v Mass-averaged velocity components in z and y direction.
Uj Mass-averaged velocity vector.
' ud  Species a velocity vector.
uSJ Species a diffusion velocity vector.
us, v, Diffusion velocities of species s in x and y directions.
u', V' Mass-averaged velocity components normal and tangential to a surface.
U Vector of conserved quantities.
V Vector of non-conserved variables.
wa Mass source term due to reaction of species s.
W Source vector.
X1 Y Cartesian coordinates.
Xf Cartesian coordinate vector.
X, Molar concentration of species s.
Z' Charge number of species s.
Zsr Number of s - r collisions per unit time.

Effective ratio of specific heats.
6iq Kronecker symbol.
bU Impicit change in the vector of conserved quantities.
A t Time step.
A U Explicit change in the vector of conserved quantities.
6,,, Vibrational energy per particle of species s.
77M Constant for use in Arrhenius form of reaction rate for reaction m, see (3.51).
Od i. Electronic activation energy of state i for species a, see (3.26).
0. Characteristic temperature ofreaction for reaction m.
Os Characteristic temperature for use in diffusive model of vibrational relaxation.
0., Characteristic temperature of vibration of species a.
K€ Conductivity of translational-rotational temperature.
Ice Conductivity of electron translational temperature.
n a Conductivity of vibrational temperature of species a.
1\ Second coefficient of viscosity.
AN' Diagonal matrix of convection speeds of characteristic variables for A
AA, , A'- Diagonal matrices of positive and negative convection speeds of characteristic variables for A'.
AViscosity of mixture.
Ps Species viscosity.
e, 71 General coordinate directions, e along the body and q normal to the body.
p Density.
pi Density of species a,
On Collision cross-section for species s and r. (Specific to the process.)

Collision limited vibrational relaxation time of species s.
T, Electron energy relaxation time of species s.
rif Shear stress tensor
-jif Species shear stress tensor.
"rL.T Landau-Teller vibrational relaxation time of species s, se(3.37).
T., Vibrational relaxation time of species s, see (3.40).

Parameter for use in Wilke mixing model, see (3.31).
Reactivity of the gas.
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l. INT'RODUCTION

Computational fluid dynamics involves the numerical simulation of the equations of motion which are the conservation of mass,
momentum and energy. The general form these equations for continuum flows are the compressible Navier-Stokes equations. Many
flowfields have been well simulated for a variety of shapes and flow conditions where strong viscous/inviscid interactions and/or flow
separation are important by solving these equations in a time-like manner until a steady state is asymptotically achieved. Real gas
effects include thermo-chemical nonequilibrium, where finite rate processes for chemical and energy exchange phenomena occur, and
radiative transport is a coupled process. To account for chemical reactions, conservation equations for each chemical species must
be added to the flowfleld equation set. There are 5 flowficld equations; one continuity, three momentum, and one energy equation.
For dissociating and ionizing air there may be typically Il reacting species (N2, 02, N, 0, NO, 0, N4 , 02', N2 , NO*, e-). The
inclusion of conservation equations for each of these species nearly triples the number of equations to be solved. When there are
combustion processes or gas/surface interactions or ablation products, the number of species increases dramatically. To account for
thermal nonequilibrium there are additional energy equations to describe the energy exchange between the various energy modes
(translational, rotational, vibrational, electronic, etc.) To further complicate the analysis the range of time scales involved in thermo-
chemical processes is many orders of magnitude wider than the mean flow time scale. This is the single most complicating factor in
reacting flow simulation. Coupled radiative transport results in a system of integrodifferential equations which are exceedingly difficult
to solve. Simplifying assumnptions, such as optical transparency, or gray gas, or tangent slab models, are generally used to reduce this
level of complexity. A wide variety of simplifications are used to alleviate problems associated with widely disparate time scales and
are discussed briefly next.

Many flows can be adequately approximated by assuming an equilibrium real gas. [lere all the reaction rates are assumed to be fast
enough relative to the fluid motion rate so that the gas is everywhere in local equilibrium and both the thermal and chemical state of
the gas can be defined solely by the local temperature and pressure. Reactions are allowed to occur but are completely uncoupled from
the flowfield equations. This is a good approximation for lower altitudes and can be used for a major portion of the analysis of such
vehicles as hypersonic aircraft which fly in the sensible part of the atmosphere. In the other extreme, reactions are sometimes so slow
that die gas can be considered frozen in a particular chemical state. This phenomenon typically occurs in regions of rapid expansion
such as in jets or base regions of body shapes, but can sometimes be used behind compressive shocks as well.

When the thermal and chemical time scales are not negligible compared to the fluid dynamic time scale, finite rate processes must be
considered. If the chemical time scale is of the order of the fluid dynamic time scale and the thermal time scale is very small (as typically
occurs at lower temperatures, say of the order of just a few thousand degrees K) then thermal equilibrium can be assumed, Here we
need to consider finite chemical rates along with the fluid motion. In the more general case (as will occur at higher temperatures) both
the thermal and chemical rate processes must be considered. In this case the chemical rate processes are typically strongly dependent
on the nonequtlibrium thermal state of die gas. The time scales can now vary over an extremely wide range, resulting in a stiff behavior
of the complete equation set. To accurately resolve all the time scales die flowficld, species, and internal energy equations must be
solved in a fully coupled manner. In cases when the chemical rates are either relatively fast or relatively slow, the species equations can
b effectively uncoupled from the flowfield equations and solved separately in a loosely coupled manner, often by a different (typically
implicit) numerical technique.

To validate these real gas codes both ground based and flight expenments are necessary to assess the effects of chemical kinetics,
high enthalpy, low density and scale. Shown in Fig. I are flight domains in terms of Reynolds number and flight speed and enthalpy
(Fig. Ia) and in terms of altitude and flight speed (Fig. lb) for typkial aerospace vehicles in hypersonic flight. Typically, at speeds
above 8,000 fps there are significant levels of oxygen dissociation, above 15,000 fp nitrogen dissociates, and above 30,000 fps there
are significant levels of ionization. When the Rey~iolds number is large, corresponding to high density, low altitude flight, die chemical
reactions (dissociation and ionization) occur sufficiently fast that the assumption of chemical equilibrium is generally appropriate. As
the density (and Reynolds number) decreases with increasing altitude, the molecular mean-free-paths increase and finite rate thermo-
chemistry becomes important. Ateven higher altitudes assumptions related to continuum flow break down and slip boundary conditions
and lugher order constituative relationships for momentum dnd energy transport must be considered. Lower density regimes are
descibed by the Boltzmann equation and ultimately by free molecule flow.

One aerospace vehicle, the aeroassist orbital transfer vehicle (AOTV), is chosen in the present context to best illustrate the features
of three-dimensional chemically reacting flows with separation and will be the basis for most of the subsequent discussion. Other
aerospace vehicles, such as transatmosphene vehicles (TAVs) and boost-glide vehicles (BGVs), can be analyzed with the tools that are
developed for AOTV simulation, and in some cases the analyses can even be simplified.

In the analyses developed herein we are concerned with fairly low flight Reynolds numbers, which indicate laminar flows, due to the
low density associated with high altitude flight. Hence, the added complexity of turbulent transport will not be considered. For slender
vehicles flying in the lower atmosphere turbulence will be an important consideration, but here the effects of finite rate chemistry are
minimal, particularly in the localized regions where there may be flow separation- The problems of turbulence and flow separation arc
treated in another section of this lecture series by Mr. Cousteix and by Prof. Dolling.

2. QUALITATIVE DESCRIPTION OF AOTV FLOWFIELD-

The qualitative aspects of a typical AOTV flowfield are discussed in this section, with attention paid to where particular physical
effects must be included in an analysis. This will indicate what type of numencal modeling will be adequate in each region of the flow.

2.1 AOTV Forebody Flowflield

The AOTV-forbody flowfleld, illustrated schematically in Fig. 2a, is dominated by the presence of the strong bow shock wave
and the consequent heating, and chemical reaction of the gas. At typical flight conditions (about ., = 30 and 80 km altitude), the
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thermal excitation and chemical reaction of the gas occur slowly enough that a significant portion of the flowfield is in a state of thermo-
chemical nonequilibrium. A second important effcct is the presence of the thick boundary layer along the surface of the AOTV. In this
region there are large thermal and chemical species gradients due to the interaction of the gas with the wall. Also at high altitudes the
shock wave and the boundary layer may become so thick that they merge; in this case the entire shock layer is dominated by viscous
effects.

A gas is in thermal nonequilibrium if, for a given density and internal energy, it is in a thermodynamic state where the internal energy
modes cannot be characterized by a unique temperature, and is in chemical nonequilibrium if its chemical state does not satisfy chemical
equilibrium conditions. As was asserted above, a portion of an AOTV forebody flowfield is in thermo-chemical nonequilibrium. This
can be seen by considering the trajectory of a control volume of air that enters the AOTV flowfield. The translational modes of this
piece of gas are heated strongly as it passes through the bow shock wave. The translational modes transfer their energy to the other
internal energy modes of the molecules through inter.molecular collisions. Alo chemical reaction of the gas species occur such as
dissociation and ionization. These processes require some number of collisions for equilibrium to be reached. Thus as the element of
gas is convected through the shock layer, these energy exchanges and chemical reactions occur at finite rates until, at some point on
the streamline, equilibrium is achieved. Therefore there will be significant thermo-chemical nonequilibrium near the bow shock wave
and near equilibrium a large distance along the fluid element's streamline. The rate at which equilibration occurs is dependent on the
free-stream density and speed, or altitude and Mach number. A parameter that quantifies the degree of chemical nonequilibrium for a
particular condition may be derived as follows; a similar parameter may be derived for the relaxation of energy modes.

Consider the species s mass conservation equation for a steady-state condition
, a (P.,#) = u, (2.1)

where w, is the mass source term due to chemical reactions. We may non-dimensionalize this equation with the free-stream (co)
conditions and the reference length, L, as

£ 8 p~,,= Lw,_8

X poouo= (2.2)

The non-dimensional quantity, , which is a forn of the Damkbhler number, may be thought of as the ratio of the fluid time scale to
the chemical time scale, or as the ratio of the chemical reaction rate to the fluid motion rate. For the case of chemical equilibrium, the
chemical rates are infinitely fast, or o -.* o, and for frozen-flow case-where the fluid rates are much larger than the chemical rates,

- 0. For conditions between these two limits the flow is, to some degree, in chemical nonequiibrium.
A more useful form of the parameter , may be derived by considering the primary reaction that occurs in high-temperature air

flows, which is the dissociation of diatomic oxygen by collisions with diatomic oxygen and nitrogen. In this case we have

W. =-wo = kfp,(P N E (2-3)
w.Mot, =k ) =(ki-. M

If we substitute expression the Arrhenius form for the forward reaction rate, k/ = CTI exp(-Oo]/T), and use the hypersonic limit
for the density change across the shock, we have

, = KoT a' exp(-59 0o/ TO) ,O( uoo (2,4)

KO = coz. (2±-'") C 3 x-101 co. (m3 K/kg s),

where we have substituted the values of the constants that were used in the computations. The post-shock temperature, T,,, can be
approximated using the hypersonic shock relation

To&-2, A42 p. (2,5)
(,Y+ 1) v-O

We have assumed that the peak reaction rate occurs immediately behind the normal shock wave, and for simplicity that te reaction
is governed by the translational temperature only. Alternatively, we can write 0oh in terms of the Reynolds number (based on the
reference length) as

'o KoTexp (-59500Ts) . (2,6)

This parameter is most strongly influenced by the exponential term in the post-shock tempzrature, which is proportional to the square
of the free-stream Mach number. For the aeroassist flight experim.-t (AFE) Oo, = 310 at perigee conditions (M.o = 32 and 78kn
altitude) and o = 64 at an entry condition whereM, = 36 at 87,.m altitude. Thus for AOTV-like conditions 002 = 0( 102); we
will see that there is a significant degree of thermo-chemical nonequilibrium in this regime and that consideration of these effects is~required for accurate results.

A second important effect in the AOTV forebody region is the interaction of the wall with the thermally excited and reacted gas in
the boundary layer. Because of the high altitudes the Reynolds number is relatively small for AOTV conditions (typically on tie order
of 104 based on free-stream conditions and nose radius). Thus the boundary layer will be thick and viscous effects will dominate much
of the flowfield. -Also, as the boundary layer is influenced by the cool wall, chemical reactions can be slowed or halted in the vicinity
of the wall. The wall can also interact chemically with the flowfield due to catalytic effects that promote the recombination of reacted
species at the wall. Thus the inclusion of viscous effects for AOTV forebody flowfield analyses is mandatory. At high atitudes, the
usual assumltion of perfect thermal accomodation and no-slip at the wall breaks down. Therefore, for some conditions,temperature
and velocity slip effects must also be included.

Another effect related to the low density regime in which AOTV's would operate is the thickening or the bow shock wave to
encompass a large volume of the flowfield. The bow shock wave is several mean-free-paths thick and at high altitudes, this implies
that the bow shock thickness is an appreciable fraction of the shock standoff distance and can merge with the thick boundary layer.



For these thick shock waves, relaxation of internal modes occurs within the shock wave; this effect must be included.in any analysis
where rarefaction occurs. Also it has been shown that the Navier-Stokes equations under-predict the shockthickness and misrepresent
the separation between the density and temperature profiles within a shock wave (Fiscko and Chapmant). Thus for some regimes the
predicted shock thickness using Navier-Stokes solvers is suspect.

2.2 AOTV Afterbody Flowfield

The flow about the AOTV afterbody, illustrated in Fig. 2b, is dominated by two phenomena; the presence of the rapid expansion as
the highly compressed gas flows around the shoulder of the vehicle and the related initiation of separation of the gas near the vehicle
corner. These two effects require specific modeling approaches and capabilities.

The expansion, which is dominated by inviscid effects, has the effect of rapidly lowering the translational temperature, density and
pressure of the gas. However, the chemical state of the gas and the temperatures that characterize the energy in the internal modes
will tend to remain constant, or frozen. This results in a flow where the vibrational and electronic temperatures of the gas are higher
than the translational temperature and where the gas is more dissociated and excited than predictedI by equilibrium conditions. As the
gas flows downstream, recombination occurs slowly the vibrational temperature rises still higher, a result of a portion of the chemical
energyof recombination being put into the vibrational modes of the gas. This can cause the gas to radiate significantly in the afterbody
region. Another important effect present in the inviscid, expanded region is the presence of species gradients across the wake. This is
caused by some portion of the gas having passed through a elatively weak oblique shock wave where it hardly reacts, and another part
of the gas having passed through the strong forebody shock where reactions are substantial. Thus the gas near the center of the wake
tends to be more dissociated than that in its extremities and consequently y,, the ratio of specific heats, varies across the wake.

A second inviscid effect associated with the wake structure is the presence of a wake shock. As the flow expands around the shoulder
of the vehicle, some of it is directed toward the centerline oi the body. However, this supersonic flow must change direction and a
reflecting shock and an oblique shock wave is formed. The gas becomes compressed in this region, and as there is are high vibrational
and electronic temperatures due to freezing, the gas can radiate significantly.

The location of the separation on the back face of the AOTV is affected by: the state of the boundary layer on the shoulder, the
Reynolds number, whether the flow is turbulent or laminar, the ratio of specific heats, and the body geometry. For many cases of
interest, particularly at high altitude, the flow can remain attached over a significant portion of the vehicle's afterbody. The location of
separation influences the dimension of the tecirculation zone and the strength of the shear-layer that forms between the recireulating
gas and the external, rapidly expanding, supersonic flow. The recirculation zone entrains gas that was in the forebody boundary layer
which is relatively cool but highly dissociated. This recirculation zone will be unsteady, the magnitude of which depending on how
the shear-layer behaves and the feedt,aek between the body motion and the state of the gas in the separated region.

The modeling of the free shear-layer must account for large gradients of velocity, temperature, density and species concentration
across it, and for the possibility that the flow may be turbulent and unsteady. The numerical treatment of the probletn is particulary
difficult because of these effects and also due to the uncertain location of this structure.

'he AOTV afterbody flowfield is characterized by the presence of thermo.chemical nonequilibrium, large gradients in thermo-
dynamic quantities and chemical state, and a large separated region. The combination of these factors stretches computation fluid
dynamics beyond it current capabilities.

3. MATIIEMATICAL FORMULATION

In this section the set of coupled partial differential equations that describes the dynamics of a high temperature flowfield is derived.
This equation set is the Navier-Stokes equations expanded so that it is applicable to a gas that is vibrationally and electronically excited,
chemically vcacting and weakly ionized. The corresponding equation of state for this gas is also developed. The assutptions underlying
the current description ae discussed and the limitations are exposed. The models that represent the transfer of mass between different
chemical species and the transfer of energy between different energy modes is described.

3.1 Basic Assumptions

The nonequilibrium flowfields that are of interest here are assumed to conform to particular criteria as outlined below, which make
the derivation of the governing equations feasible and are the basis for the entire solution technique.

The flowfields are assumed to be accurately dew-ribed by a continuum formulation. The Knudsen number, Kn, is defined to be
the ratio of the mean-free-path associated with the flow condiuons to the characteristic length scale of the body or of the flow itself.
The continuum formulation is valid for Knudsen numbers much less than one* where there are a large number of molecules within a
computational volume. This implies that there is little stattstical variation at any point, and as a result, the continuum description of
the viscous fluxes is consistent. A second requirement of this approach regards the treatment of the interaction between the gas and the
surface of the body. It is assumed that there are a large enoigh number of collisions of the gas molecules with the wall so that there is
no velocity or temperature slip at the wall. This condition is also satisfied with a small Knudsen number.

It is assumed that the thermal state of the gas can be described by separate and independent temperatures. The energy in the trans-
lational modes of all the heavy-particles, i.e. everything except the electrons, is assumed to be characterized by a single translational
temperature. The rotational state of the diatomic molecules is assumed to be equilibrated with this translational temperature. Thus, we
have a single temperature, T, that characterizes the translational-rotational state of the gas. This assumption is reasonable at conditions
within the continuum regime where, for air seies rotational equilibration with translation takes of the order of five collisions because
of the low characteristic temperature of rotation.

The energy contained in the vibrational modes of diatomie species a can be described by the vibrational temperature, T,,, which is
not related to the rotational state of the gas. The vibrational state is assumed to conform to the harmonic oscillator description at all
vibrational temperatures. A second assumption implicit in the formulation of the vibrational state is that rotational-vibrational coupling

t This requirement is usually met with Kn<O.l and flowfields for this Kn have been computed.
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is not significant. Each diatomic species is assumed to have a separate vibrational energy, and a corresponding vibrational temperature.
The translational energy of the free electrons is quantified by the electron temperature, Te. The excited electronic states of the molecules
are assumed to be in a Boltzmann distribution corresponding to the electron translational temperature. The gas may be only weakly
ionized, which implies that there the mass fraction of ions is less than one percent tt. Although this assumption is not implemented
explicitly in the derivation of the governing equations, several terms that can have a significant influence in a highly ionized plasma
have been ignored.

3,2 The Conservation Equations

The time.dependent equations that govern the motion of a gas mixture ae derived in this section. First the individual species mass,
momentum, and cneav -onservation equations are discussed and then these are combined to yield the complete equation set.

The equations that -. be the conservation of mass, momentum, and energy for the chemical species a of the gas may be written
as follows. The spc i n, iss conservation is given by2-

OP. + .(P ) _- ,. (3.1)

at Orrf

The species momentum conservation is written as

at a/zi (,u ( U,,u 1, + p,8jj + )= N, eZ,Eji+ P,, (3.2)

and the species energy conservation as

, + ((E, + p,)u, + U,,.,,f + q,.f) = -N,.eZ iu j + Qs, (3.3)

where u,, is the species velocity in the i direction. The terms appearing on the right-hand side; of these equations, t,, P,,, and Q,,
represent the mesz, momentum, and energy transfer rates respectively. The ma~s source term, w,, is the rate of production of species
s due to chemical reactions. P,, is the rate of momentum transfer between species s and the other molecules due to collisions and
force-field interactions in the i direction. And Q, represents the rate of energy transfer to and from the various energy modes of a due
to interactions with other species. The quantity P, is the electric field in the i direction due to charge separation; it acts on ions and
electrons only. rg is the shear stress tensor and qtj is the total heat flux vector of species a.

The vibrational energy conservation equation for each diatomic species may be derived by considering the conservation of the
N vibrational energy perparticle, e.,, as it is convected at a velocity usi. If there is no conduction of vibrational energy orenergy transfer,

then we have simply act. a,, 0

Ft ax Z(3.4)

The vibrational energy per particle is related to the vibrational energy per unit volume by the relation

A4

If we multiply equation (3.4) by pl/M,, and use expression (3.5), we have the equation

ap, e. ap, +a aate, ax+(Pev, e,.,j) - c",a (psuf,) = O. (3.6)

The vibrational energy conservation equation results by multiplying equation (3.1) by e,,, and adding it to equation (3.6), to get

8qg# + Qv + Ws+0, -7+ a , = -. -, + ,e., (3.7)
a+ o~~u1  x,

where the vibrational heat conduction and energy transfer rate have also been included. The term we,, in this equation results from
the derivation and is due to the fact that vibrational energy is conserved on a per-particle basis, not on a volumetric basis. It represents
the aniount of vibrational energy that is added to or taken away from the vibrational energy due to the production or destruction of
species s. We have not taken into account any preferential removal of vibrational energy due to dissociation with this approach.
That is, the diatomie molecules that dissociate tend to be those in the highly excited vibrational levels; thus they carry more than the
average vibrational energy with them and a dissociation reaction suppresses the vibrational temperature5- 7 . However, as indicated by
Parks, 9 , ignoring the effect of preferential removal is appropriate because the dissociation reaction rates that are available currently
were computed without including this effect and this approach is consistent with the use of these rates.

In principle, the ncomponent gas could be represented by solving equations (3.1-3) and (3.7) foreach species. Ilowever, this would
entail the solution of n momentum equations and the evaluation of the momentum exchange term P. This approach is not feasible
for a two or three-dimensional flowfield with more than a few species. The preblem may be simplified by assuming that the species
velocities, u,j, are approximately the same size as the mass-averaged velocity, ui, defined by

u,= -, P = B,,. (3.8)

tt Weak ionization depends on having a small Coulomb cross-section relative to the electron.neutral cross-section (see Section 3.6.2).

i , .........----------------- ~ - - - - - - - - -~.-... - - - - -
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Then we define the diffusion velocity, Va, to be the difference between the species velocity and the mass.averaged velocity

Vat u no - ui- (3.9)

Expressed with these new variables, the species mass conservation equation, (3.1), becomes

+' = .ti 3. (3.10)

The species momentum equation, (3.2), may be summed over all species to yield the mass-averaged momentum equation

4. +a( m p6i;) + e N -Z. (3.11)

where the total pressure, p, and shear stress 'r, are defined as the sum of the specie, uantities. By making this summation, the inter-
species momentum transfer ttrpts, Pa, sum identically to zero, which is a significant simplification. However, the sum of the induced
electric field forces is not zero oue to the differing charge numbers on ions and electrons.

A similar summatioa may be made to the species energy equation, (3.3), to yield the total energy equation for the mixture

OE a a i9"TtE .+-Tj - q.1 qj) - - (uj)j
+ - ((E+ p)uj) = -'i +- + q,)

(3.12)

The heat conduction vector has been expressed in component form, where each term is dut to gradients in the different temperatures
in the flowficld.

In addition to the total energy equation, we require an equation for each form of energy that is treated separately. In this case, we are
using the approach where a vibrational energy for each diatomic species and the electron energy are computed. Thus, for a gas with m
diatomic species, we need to solve m vibrational energy equations, (3.7), which may be re-written as

-'-" - (Eantj)=a Ox Ox; (3.13)
4-. + Qr-0 + QV- 5S + Q-.-, + We 3_

The various mechanisms to transfer energy to the vibrational energy modes have been represented here. Qr-.,,, Qv-, , and Qe_,, are
respectively the rate of translation-vibration, vibration-vibration, and electron-vibration energy exchange.

The dynamics of the electron translational energy, E,, are computed with the solution of the electron energy equation which is a
species energy equation, (3.3), applied to electrons. This may be written as

OF,, + ((E+p,)uj) = -Ox

a M (3.14)

- - ((ui+ V,)i,;) - NMeE.(u,+ t,3.) + Qr-, - . e. .+ wet.

Where Qs_, is the translation-electron energy exchange rate. We should note that the transport of electron energy is ftndamentally
different than that of vibrational energy. The vibrational energy of a species is convected at the local velocity u,, whereas the electron
energy convection speed is also a function of the local electron pressure, p,.

These differential equations describe the flow of an n species, the first m of which are diatomic, weakly ionized gas. The solution
of these equations yields the dynamics of the conserved flow variables pi.. p,,, put,E,: Em, ee, and E.

3- I.mplifications to the Conservation Equations

Some minor simplifications to the governing equations may be made which make it possible to determine an algebraic expression
for the electric field. Consider the species momentum equation, (3.2), applied to electrons

0(Plueo+2(&uaue,+peji) ,- .eNb + P.(3

fwe take the ratio of thedynamic pressure of theelectron gas to the electronpressure and assume that theelectror speed and temperature
are about the same as the bulk gas, we have

ptt M MU! V~U M.Ml
-- RT-CRTm2 (3,16)

The ratio of electron mass in heavy particle mass, M/M, is of the order of 10 6 and foe conditions of interest the square of the Mach
number will be of the order of 10 at most. Therefore we can neglect the clectron dynamic pressure relative to the electron pressure.
The electron shear-stress is also small relativc to the electron pressure, and because we are solving for a steady-state, we may neglect-
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the time derivative of tn, .:.,--entum. The momentum transfer rate due to inter-species collisions, P,,, is assumed to be small for
electrons due to their small collision cross-section. Therefore, by neglecting these terms, the electric field may be expressed as

a - -(3,17)

This simplification eases the solution considerably because the electric field is fundamentally represented by a set of electro-dynamic
equations'

A further modification to this expression is required to diagonalize the equation set for efficient numerical solution, as will be seen in
the following section. Namely, the term J p,uf will be moved to the right-hand side and treated as a viscous term, taking the equation
set out of conservation-law form. Then (3.14) becomes

O-I+ a(Eue) t0"'7 * j (Euj) =..- t p, - -(u t,. ,J-o
Sax 

(3.18)
+ Qr-, - FQe=, = + teec,

6-1

where we have assumed that the electron shear stresses are negligible. The final assumption is that the terms which involve the square
of diffusion velocities or are products of species shear-stresses and diffusion velocities are negligible; this alters (3.11) and (3.12).

3.5 Equations of State

The relationship between the conserved quantities and the non-conserved quantities such as pressure and temperature are derived
in this section. The total energy, E, is made up of the separate components of energy which may be written as

nm

sit 2f ,is 6- sc sic

This expression may be inverted to yield the energy in the translational-rotational modes, and consequently T. The constants of specific
heat at constant volume, c,., are the sum of the specific heat of translation, c,, and the specific heat of rotation, c,1 t,. These are
given by

3R
C A l 2 ,' 

(3.20)"u ,for s--- 1, t;
C,,=[0: otherwise.

The vibrational temperature of species s is determined by inverting the expression for the vibrational energy contained in a harmonic
oscillator at the temperature T,,

E R O,
A," = P.M. e,,/A- - I' (.1

where 0,, is the characteristic temperature of vibration. The electron temperature is determined by inverting the relation between the
electron energy, E,, and the energy contained in tie electron thermal and kinetic energy

BE = p'cvT, + -pu 1u,. (3.22)

The electronic excitation energy of the molecules which is characterized by T, has been inciuded in the total energy and not in the free
electron translational energy. The total pressure is the sum of the partial pressures,

A + PsEPA''T +(3.23)

and the electron pressure is given by

t= p, P T,. (3,24)

The enthalpy per unit mass, h,, is defined to be

h, = cT + ' + e,, + h + e,,,. .25)
Ps

The expression for the energy contartd in the excited electron states comes from the assumption that they are in a Boltzmann distri-
bution governed by the electron translational temperature, T, (Lee). This yields

eA = ~ M"j, i.sg exp(-Od ,/1) (3.26)
M. Z'o 9j.exp)(-OjjjT,)

where gi, is the degeneracy of state i and 0 is is the excitation energy of that state. In this study only the terms in the sum up to i= I
are included.

3.5 Shear Stresses, Heat Fluxes, and Diffusion Velocities
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The shear stresses are assumed to be proportional to the first derivative of the mass-averaged velocities and the Stokes assumption
for the bulk viscosity is made. Therefore the expression for the shear stress tensor is

rj= - ,1 + sq ) "OU, X 2 (3.27)
8XI axi iX

And the heat conduction vectors are are assumed to be given by the Fourier heat law

q /, O(3.28)
qvst =  

e'xi,

The flux of electron energy, q,j, has been taken to be zero. This assumption is reasonable because the proportion of electron energy in
the total energy is very small. The assumptions of a linear relation between the shear stress and the velocity gradients and between the
heat fluxes and the gradients of temperature are suspect as hypersonic Mach numbers. A more accurate description is a topic of current
and future research (Fiscko and Chapmant).

A viscosity model for reacting air developed by Blotmer et a0 O may be used to determine the species viscosity, ,.. The model uses
three constants for a curve fit and yields

p= 0.1 exp[(A,InT+ B,) In Ti+C,], (in kg/m s) (3.29)

where A,, B,, and C, are found in the Appendix. The curve fits for the viscosity are appropriate for temperatures up to 10,000 K
and for weak ionizati,)n.

The conductivi,. )t th -trans'ational-rotational and vibrational temperatures for each species may be derived from an Eucken re-
lation t . With this , it is assumed that the transport of translational energy involves correlation with the velocity, but the
transport of internal e,.-i- (-e. lional and vibrational) involves no correlation. The result is that

, = , ( w + cwos) Av = ,4(v ib (3.30)

The total viscosity and conductivity of the gas are then calculated using Wilke'stt semi-empirical mixing rule.

,en

where
X. , = ( ), (3.31)

//M, ',I ra

If we assume that the diffustve fluxes due to pressure and temperature gradients are negligible, then the diffusion velocity of eachcomponent of the gas mixture is proportional to the gradient of the mass concentration. With the additional assumption of binary
diffusion where species 8s diffuses into a mixture of similar particles, we have

PV= - a.c (3.32)

The diffusion coefficient, D., is derived by assuming a constant Lewis number, Le, which by definition is given by

Ce PCE. (3.33)

The uncharged particles all have the same D, but the diffusion coefficient for ions is assumed to be doubled (Le. the ambipolar diffusion
assumption holds) because of the existence of an electric field. The diffusion velocity of electrons is computed using

D, = M. (3.34)

which is derived from Lee2 .

3.6 Encrgy Exchange Mechanisms

The energy exchange mechanisms that appear on the right hand side of equations (3.13) and (3.14) must be modeled. The models
that have been proposed are simplifications of the complicated energy exchange processes that occur on a molecular level. This
phenomenologie treatment has inadequacies because it does not fully embody the physics of molecular interactions.

3.6.1 Translation-Vibration Energy Exchanges
The rate of energy exchange between vibrational and translational modes has been discussed extensivelyS.,9 t1- 4. The rate of

change in the population of the vibrational states at low temperatures is described well by the Landau-Teller formulation where it is

See Vincenti and Kruger3, pp. 15-21.
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assumed that the vibrational level of a molecule can change by only one quantum level at a time (Vincenti and Kruger3). Tie resulting

energy exchange rate is
S e,T) - e,,

"- = p eVS)r - (3.35)< 7$L,.r >

Where e ,(T) is the vibrational energy per unit mass of species s evaluated at the local translational-rotational temperature and < r,,. >
is the molar averaged Landau-Teller relaxation time given by Lee (1985).

2,X,<.r> r X for r V e. (3,36)

An expression developed by Millikan and White12 yields the Landau-Teller inter-species relaxation times, r,,.,., in seconds using the
function

= Iexp [A,,(T - tI' - 0.015p1(') - 18.42], pin atm,
l6ip 3  

/
12 04/ 3  

(3.37)A,,= 1.16 xv 0-,,, -s P

Ju,, = MMr/( M + MI).

However, at high vibrational temperatures the vibrational ladder climbing process due to heavy particle collisions is diffusive in
nature' ,9 3, . Park (1987) proposes an empirical bridging function between the Landau-Teller and diffusive rates of the form

Qr e:T) - e,, -Tv s -

-,, 
= Ps tTht -7 T I (3.38)

T" I - Tt I

where the exponent, S,, has the form
S. 3.5 exp(-O,/Thk). (3,39)

The quantities Ts". and T,,t* are the translational-rotational and species vibrational temperatures evaluated just behind the bow shock
wave. At low temperatures, the relaxation is governed by the Landau-Teller rate, and at high temperatures, by the slower diffusive rate.
The characteristic temperatures, 0,, for use in calculating the exponent, S,, are assumed to be as given in the Appendix.

A second modification to the translational-vibrational relaxation rate is made to account for the limiting collision cross-section at
high temperature. The Landau-Teller rate expression front Millikan and White yields a relaxation rate that is unrealistically large at
high temperatures due to an overprediction of the collision cross-section. The addition of the limiting cross-section rate corrects this
inaccuracy. As suggested by Park13, a new relaxation time, r,, that is the sum of the Landau-Teller relaxation time and the collision
limited relaxation time, r,, corrects this inadequacy. Thus if we use equation (3.38) with this new rate, we have the final form of the
energy exchange mechanism

*JeT) - c. TS -TQT,,V S se 7V TSU -TwIM 1 (3.40)

where

l(3.41)

c, is the average molecular speed of species a, c, = V8/'- IM, and N, is the number density of the colliding particles. The expression
for the limiting collision cross-section, o,, is assumed to be as given by (Park 3)

a 10-1t(50,000/T)2  ma. (3.42)

3.6.2 Translation-Electron Energy Exchanges

The energy transfer rate between tie heavy-particle and electron translational modes, Q7-.,, is given by an expression derived from
Lee2

Q-3Rpe(T-Tz) -z -_
., =3M,-''a,, (3.43)

where a, r V ions, are the collision cross-sections for electron-neutral interactions. The functional form of these parameters is not
well known and for this work a constant a,, equal to 10-20 m2 was assumed. For the case of electron-ion interactions the effective
Coulomb cross-section is given by (Lee2 )

81r '  •r4 9k:3T'
" 8 ire n[1 v 6 (3.44)

3.6.3 Electron-Vibration Energy Exchanges

The coupling of the electron energy with the vibrational energy of diatomic nitrogen is strong, but between the other vibrational
states it is negligibly weak (Lee 6). The rate of energy transfer between electron translational modes and nitrogen vibrational modes,
Qe-v A, is assumed to be

MP Af, for s N2 (3.45)Q': M, ,,
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Leet6 derived an expression for the rate of electron-vibration energy transfer, i,, by solving the system of master equations that
accounts for transitions of multiple levels. r, was curve-fit to the results of Lee using two quadratics in the logarithm (base 10) of theelectron temperature. This expression is

f 7.50(logT,)2 
- 57.0 log T + 98.70, forT <7000K;

log(p,,) = [2.36'logT,)2 
- 17.9 logT +24.35, forT >7000K, (3.46)

where p, is in atmospheres and the zesulting r, is in seconds.

3.6.4 Vibration-Vibration Energy Exchanges
In a mixture of diatomic gases that have been thermally excited, the vibrational temperature of each constituent relaxes toward thetranslational temperature at a finite rate. However, as one species becomes vibrationally excited, it tends to transfer its vibrationalenergy to the other species in vibration-vibration (v-u) energy exchanges which drives the separate vibrational temperatures together.

A rate of vibrational energy transfer between species can be derived from kinetic theory and experimentally determined probabilities
of vibrational energy exchange during a collision. This expression is (Candler and MacCormack 7 .)

-R Pr. a E, t (347)

The probabilities of an exchange, Pr, have been measured for several different molecules (Taylor et alt ), For temperatures of interest
(above 2000 K), they are typically of the order of 10 -2, and for this work have been assumed to be constant at that value. The collision
cross-sections for this process are computed with the expression o, = ddc, where d, are the collision diameters.

3.7 Chemical Source Terms
The chemical source terms are derived from the reactions that occur between the components of the gas. The expressions for these

mass transfer rates are derived below and the treatment of the reaction rates is discussed.
For high temperature ionized air there are seven primary constituents, which may be ordered as fol~ows, N2 , Oz, NO, NO ', N, 0,

and e. Tite most important chemical reactions between these species are

N2 + M ;2N+ M
02+M ;e2G+M

NO+M =N+O+M
N2+0O +N (3.48)

NO + 0 --Oz + N
SN+ 0 =NO+ +e-,

where M represents any particle that acts as a collision partnerin the reaction and is not altered. The first three are dissociation reactions,the fourth and fifth are exchange reactions and the last is on associative ionization reaction, Each reaction is governed by forward and
backward reaction rate coefficients, kf., and k6., respectively. The six reactions may be written in order as

R1 "E[-kf P- p -k +. P8 P" P-a

m - MN, Mm MN MN M

PO, Pm  PO PO Pm-
S= -'I . M- Mo MM
, PNo P-,+ P. P0 Pm

M MNO M UMN Mo M (3.49)
R, -- PN 0 -o +,, PNO .ON-'% M o M he U'N M

-- , PNO PO + PO PN

,2 P +0 kPNo' P.

Thus the source terms that represent the inter-species mass transfer rates may be constructed as

WNz = MN,(Rt + 7Z4 )

W% = Mo;(Pz -1s)
WNo = MNo M3 -R4 + RS)
wiNe. = -Mt~o.'R6 (3.50)
wN = UN (-27"I -3- --R4 - R54 + ?-6)

we -- Mo(-2"R2 - R3 + 4.4 + R-s + TR6)

W, = -MX6.
We should note that the sum of the mass transfer rates is identically zero and that elemental conservation holds, as required.

The forward and backward reaction rates of reaction m have the functional form

kA(!i') ctf'j"" cxp(-O&f),
- k1 ) (3.51). k "(T Kv,.(T)'
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where the constants O. q,, , and 0 and the expression for Kq are experimentally determined. As discussed by ParkMg
t9

, the
reaction rates will be a function of different temperatures depending on the type of reaction. Take, for example, the first three reactions
where the impacting particle, M, is a heavy species (i.e. not an electren). The forward reaction rate will be a function of the vibrational
excitation of the diatomic molecule and the translational temperature of the impacting heavy particle. Thus we can postulate an average
temperature that governs this reaction rate to be (Park

9
)

L k . = kf.('), T '= /I , for l= 1,3 and m= 1,6. (3.52)

However, the backward reaction rates will depend only on the translational temperature of the impacting particles,

kb, =k,.(T), for I= 1,3 and m= 1,6, (3.53)

For the case where the impacting particle is an electron, the forward rate will depend on the average of the vibrational temperature and

the electron translational temperature,

kt,4 = k/(T), T= V ,'T- fort= 1,3. (3.54)

Similarly, the backward reaction rate is governed by an average temperature

kk. = k&(T), T = /77T , for I= 1,3. (3.55)

The forward and backward rates of reactions 4 and 5 will depend only on the relative speed of the impacting molecules, which implies
that T = T. The forward rate of reaction 6 will also be governed by the translational temperature of the impacting atoms. However,
its backward reaction rate will depend on the vibrational temperature of the NO I and translational temperature of the electrons,

k6, =k'(T), T = jTNo.T. (3.56)

The magnitudes of the published reaction rate coefficients vary greatly, especially at high temperatures. However, the use of the two-
temperature rate model tends to lower the effective temperature and decrease the variation. The forward reaction rates for the first five
reactions were taken from Parkt

9
. The coefficients for the sixth reaction came from Wray (Bussing and EberhardtP). The expressions

for the equilibrium constants, Ke,, were taken from Parkts. These data are listed in the Appendix.

3.8 Boundary Conditions

The boundary conditions for the problem are as follows. The free-stream is supersonic so that all flow variables are fixed on the
boundary outside of the bow shock wave. The outflow is also supersonic or within the boundary layer and, therefore, we can impose
a zero-gradient exit condition. The wall boundaries are specified by assuming either an adiabatic or fixed-wall temperature, a no-slip
velocity condition, and a zero normal gradient of pressure at the wall. In the results presented below the wall was assumed to be fully

non-catalytic, which implies that the normal gradient of each species mass concentration is zero at the wall. The wall was considered
to be adiabatic for the electron temperature.

3.9 Summary of Governing Equations

The governing differential equations are summarized in this section.-For the case of interest, there is one mass conservation equation
for each of the nchemical species. These equations may be written as

OP. - -i -(P.u,) _O (p. ,j )  (3.57)
a ,Xj ,,,

There are d momentum conservation equations, where d is the spatial dimension of the problem.

aj + p6 ; 8 - L ' (3.58)

The conservation of vibrational energy for each of the m diatomic species is represented as

+Xj (3.59)

ox + Q r .,, + .... + .... + W ew..

The electron energy is conserved according to the equation

O e 0 Onu Oqe.. +(3 60
-+ _L(BEuj) = -L(E , - LO; -L +x Q p1.- F , s+ Wse. (3.60)

And finally the conservation of total energy is represented by

O--+ ((E+p)uj) - 0
(qj+ qj + q5;) -- )

X/, 0f . X--,i. (3-.61)

N' ax

III
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Thus the flowfield is represented with n+d+m+2 coupled differential equations. These equations have been written with the inviscid
fluxes on the left-hand side and the viscous fluxes and source terms on the right-hand side. The solution technique that was used to
solve these equations is discussed in the next section.

4. NUMERICAL SOLUTION PROCEDURE

* In this section we briefly discuss the technique for solving the set of governing equations. This is done in the context of a general im-
plicit numerical scheme, and demonstrates that many numerical techniques that are used for perfect gases also apply to thermo-chemical
nonequilibrium gases. The description of a specific numerical method may be found elsewhere (Candler2t and MacCormack2 2).

4.1 The ConEervation-Law Form of the Governing Equations
The governing equations for the nonequilibrium flow that were presented in the previous section may be written in a form that

is more suitable for the derivation of a numerical method. This is the conservation-law form of the differential equations where the
time rate of change of the vector of conserved quantities is balanced by the gradients in the flux vectors and the source vector. In two
dimensions the governing equations written in this form are

D+ OF OG- + +- = w,(4.1)
at ax Dy

where the vector of conserved quantities, U, is given by

U = (pt, p2) ... pp, pu, pv, Eg1 ... , . B,, E)T. (4.2)

The quantities u and v are the mass-averaged velocity components in the x and y directions respectively. The x direction flux is written
as

P) (u+ u|)
P 2(u+ u2)

p(u + u.)
pu

2 
+ p + T..

F = py + T V  (4.3)', E.1 (U + ut) + q'i.

E_,(u + u,) + q,,

E,(u + u') +q'.
(B + p-i+..) u + "v + qz + qvz + qx + £,"t ph~u,

where the quantity u, is the x component of the diffusion velocity of species s. The y direction flux has a similar form. The source
vector that is made up of terms that represent the mass, momentum, and energy transfer rates may be written as

W1
W2

Z6'&

W= (4.4)
Qr-VI + QV-VI + QC-VI + w1e t

QT-., + QV-V, + Qe-vm + 7,Weom

_p,(j-.+ P,) + Qr- - Fm I Qt-',8 + wtetPP + +b

Equation (4.1) is written in Cartesian coordinates, however w, are interested in applying the numerical method to a general grid and
thus we must make a transformation to a general coordinate system, C and n. Using the chain rule of differentials, we can write

4 = D + o nD

DX DzD8 O x O ' (4,5)aO at 87 . n

L, Thus the Cartesian derivatives in equation (4.1) may be replaced to yield

a+a LF )+ 2-LF+ "G W. (4.6)

; ~~If we define a.+a.

Ox Oz
' 0 / + Or (4.7)

rF _ YG,

2,D Dq
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our set of governing equations becomes
au oF' 80'

.+ - + - W. (4,8)

This is the basic equation that will be used in the derivation of the numerical method.

4.2 Numerical Methodology

The basic equation set written in conservation.law form, equation (4.8), may be first-order finite differenced in space and time to
yield the implicit difference equation

Un],U +At[ F--,I J' = A t w"I ,  (4.9)

where we have assumed that the solution is known at time level n. The equation is expressed entirely at the future time level, n + I
where the solution is unknown. The spatial difference operators are generic; the direction of the differencing will become apparent
later. Both of the flux vectors may be broken into two parts, the flux due to the inviscid terms and that due to the viscous terms. For
example

F= + I,, (4.10)

where the subscripts denote the inviscid and viscous terms of Y respectively. The inviscid part of the flux may then be linearized to
yield the expression F"' = 1r + A'"(U ")+t -U") +O(At2), (4.11)

where A' is the Jacobian of F, with respect to U. Due to the homogeneity of 1, we can also express the flux at time level n in terms
of the Jacobian A' as

F" = A'"U" = (A'" + A")U , (4.12)

where A' has been broken into the elements of the fluxes moving in the positive C direction, A+, and those moving in the negative
direction, AL. This partitioning is performed by dagonalizing A'. We can do this by writing

A' , =~ aU aV Ot, aV (4.13)
a: &V a U av au'

where V is a vector of non-conserved flow variables introduced for convenience. The choice of V is not unique, but in this case we
have used

V
= 

(Pl, P2, Po, up V, CO) ... , ev.m, et, P) (4.14)
With this choice of V the diagonalization ofo f-vL is straight-forward and the result may be written as

av Oq
OV0- = 0;,' AA CA', (4.15)

where AA, is a diagonal matrix. If we define S= - and a rotation matrix RA, such that CA, = 
CA RA, we have

A' = S -
' R~

t 
C;1 AA, CARAS, (4.16)

Let the diagonal matrix AA,+ be made up of the positive elements of AA, and AA,_ be composed of its negative elements. Then we
have

A" = S-
t 

R;' C;' A,. CA RA S, (4.17)

A" = S- ' R' C;' An,,_ CA RA S,
which represent the split-flux Jacobians of the inviscid flux vector F'. The inviscid flux entering or leaving a volume across a surface
is given in equation (4.12), however the grid point where each term should be evaluated is ambiguous. We do not have data stored at
the surface itself, and therefore an approximation must be mide. The flux traveling in the positive C direction originates at the point
i,j and that traveling in the negative C direction comes from point i+ ,j. Therefore the inviscid flux across surface i+,j is given by

j = A ' 
j
, jd + A'2 .- jjU+ ,i, j. (4.18)

We need a scheme to determine at what grid point we should evaluate the Jacobians. Two methods have been used in this study.
The primary technique used was proposed by MacCormack23 and MacCormack and Candltrzi and has been shown to have favorable
chararteristics for the treatment of a boundary layer. With this methodt both of the Jacobians, A. and A', are always evaluated at the
same place. The point used is alternated between i,j and i+ 1, J. The second method was proposed by Steger and Warminge' and the
flux-splitting is performed so that

F'I+f = -A'U& + A!_+j.tU[j. (4.19)

The second technique is very dissipative and shows poorresults in a boundary layer (MacCormack and CandierP), but was used in the
work presented below in strong pressure gradient regions to maintain numerical stability and to capture shock waves t . For simplicity,
the subscript i+ ,j will be left on A' to imply that either flux-splitting method may be used.

Having made these approximations, we can express the inviscid fluxes at tito level n+ 1, using (4.11), (4.18), and the definition
sU = 

U" t 
- U1, as follows

jIja A jqjUj' + A!'iq jjj lj + 4-',.ISU' A!'i# fiU1,J. 4.0

(j+jd B'" j +Uij + B'" jq U 1 I ,- +B'+ij+I., SUi, +i BT}OUi (4.20)

t At any point where the pressure changes by 25% across a surface, the Steger-Warming flux-splitting, (4.19), is used.
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The source vector may be linearized in a similar fashion so that we have

17 = , U + O(t), (421)

where C is the Jacobian of W with respect to U.

Using these approximations for i,, 0'1"i !- and Wl',i+ we can devise an implicit numerical scheme for the solution of (4.8).
This has been discussed in detail bay Candle 2t and by Candler and MacCormackW for the particular case of an implicit flux.split
Gauss-Seidel line relaxation method. However, the concepts discussed here, namely the homogeneity of the flux vectors and the
splitting of the flux Jacobians, can be exploited for many different numerical schemes. Grossman and Cinnella 6 use these ideas in the
derivation of Van Leer flux-vector split and Roe averar-d algorithms.

5. NUMERICAL RESULTS

In this section we discuss some numerical results obtained with the model for air described in Section 3. The equation set was
solved using the implicit Gauss-Seidel line-relaxation technique of MacCormack 3 . We briefly discuss some cases where computed
results are compared to experiments in an attempt to validate the physical model and the solution procedure. There is good agreement
in all cases. The numerical method is then used to compute the flow about an axisymmetric AOTV-like vehicle at two flight -onditions,
which correspond to perigee for the Aeroassist Flight Experiment (AFE) vehicle and to the approximate limit of the continuum regime
where the gas model is applicable.

Several test cases are presented which demonstrate that the model for high temperature air gives results that agree with exper-
intent. These calculations are discussed more extensively by Candler and MacCormackt 7 and Candlerf t. The model for air uses
seven chemical species: N2, 02, NO, NO*, N, 0, and e-. There are six temperatures that describe the gas at every point: one
translational-rotational, vibrational for each diatomie species, and an electron-electronic temperature.

5.1 RAM-C Flight Experiment

The first case to be discussed is a comparison of the peak electron number density about a sphere-cone vehicle traveling in the
atmosphere at near satellite speed (7.65 km/s). The experimental vehiclea-30 was 0.1524m nose radius sphere attached to a 9* half-
angle cone; which was insuumented at several locations to measure peak electron number density. The flowfield about this vehicle
was computed at three altitudes on a 35 x 50 mesh for about ten nose radii of the vehicle. Figure 3 shows the comparison with the
experimental results and the computed results along the axis of the cone for-these three flight conditions (61nkm, 71 kin, and 81 km
altitude). We see that for these three fight conditions, there is very good agreement.
5.2 lint Nitrogen Flow About a Cylinder

The flow about a 2-inch (5.08 cm) diameter cylinder in hot, partially dissociated nitrogen (CN, o - 0 927 CN = 0.073) was
computed using the thenno-chemical nonequlibrium algorithm. This case replicates an experiment of lorungA, in which interfero-
grams were made of this flowfield. The free-stream conditions are u. = 5.59kmr/s, T,, = 1833K, and p,, = 2910Pa. To compare
the computed results with experiment, we relate the density change, Ap, to the fringe pattern using an expression from Homung3'

4160F. i kg/m),A"Pe(1+028cN) (ping

where F is the fringe number, N is the wavelength, and 9 is the experiment's geometrical path. Contours of constant fringe number
are plotted in Figure 4. The shapes of the computed contours are very similar to the experimental fringe patterns and the location of
the experimental and computed shock waves coincide. Thus, the multi-temperatre model predicts the correct distribution of density
within this reacting flow. Several other teat cases have also been computed using the thermo.chemical nonequilibrium algorithm and
also show very good comparison with experiment".

5.3 AOTV Flowfield

The flowfield around an axisymmetric AOTV was computed for two conditions in the proposed trajectory. The first is for the perigee
conditions at 78 kn and a free-stream velocity of8 91 km/se. The second is at 90 km and 9.89 km/sec which is the approximate
limit of the colit:.'.uum regime. Both cases were run with an assumed fixed wall temperature of 1000 K and a non-catalytic wall. Table
I gives the free-stream conditions for each case. The composition of the air at 78 km was assumed to be 79% N2 and 21% 02 and at
90 km to be 76 .6% N2, 23.23% 02 and 0.17% 0 (by mass). A plot of the grid used for the low altitude case is presented in Figure 5.

Table L Free-stream Conditions for AOTV Test Cases.

78kin 90km
u', (m/s) 8910 9890
T. (K) 197 188
p. (kg/m -) 2.78 x 10-  3.14 x 10- ,

Re 43400 5670
MW 31.6 36.4

5.3.1 AOTV Forebody

The perigee conditions of the AFE flight trajectory will expose the vehicleto the highest radiative and convective heating and the
largest drag forces. The accurate prediction of these aerothermal loads is critical to the design of an AOTV. A discussion of the nature
of the flowfield and the surface heating follows.

Figure 6, shows the density distribution along the stagnation streamline. The shock layer and the boundary layer are distinct in this
case. If the standoff distance is defined to be the point where the density rise is six times the free-stream density, the shock standoff is
0.137 m, or 5.96% of the nose radius. Figure 7 is a plot of the molar concentrations along the stagnation streamline. The peak molar
concentration of NO+ ions is 1.83 x 10-.

- --''---------- -
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The translational-rotational, nitrogen vibrational, and electron-electronic temperature distributions on the stagnation streamline are
plotted in Figure 8. The other three vibrational temperatures are not plotted, because they have a similar behavior as that of nitrogen.
There is a strong degree of thermal nonequilibrium near the shock, but for this case, the clectron and vibrational temperatures equilibrate
with the translational-rotational temperature within about 50% of the distance to the wall. The electron temperature rises near the shock
due to translation-electron exchanges, and rises further downstream as the vibrational temperature becomes excited and the electron-
vibration energy exchanges become more efficient.

Figures 9a and 9b show the calculated convective and radiative heating to the body surface as a function of distance from the nose.
The stagnation point convective heating value is 16.5 W/cm2 . The heating rises on the ellipsoidal part of the body to a peak of
19.3 W/cm2 and then drops to a nearly constant 14 W/cmI for the length of the cone. The rise in the heat transfer away from the
nose is postulated to be a result of the ellisoidal surface curvature. The gas accelerates around the ellipsoidal nose, causing the boundary
layer to thin, and increasing the temperature gradients and the heat transfer. The surface pressure distribution also has an interesting
behaviour, as shown in Figure 9c. The gas experiences an adverse pressure gradient after the ellipsoid-cone juncture at C = 0.9 in. This
is a result of centrifugal forces decreasing the pressure on the ellipsoidal surface as compared to the adjacent conical surface. Tl~ese
effects have been observed experimentall 3 2. The stagnation point convective heating is similar to the 15.2 W /cm 2 predicted by Fay
and Riddell with Goulard's correction for a ton-catalytic wallI33, 1, but it is considerably lower than the 24.8 W/rcm 2 that Moss et
a05 calculated. This discrepancy is probably due to the inclusion of a catalytic wall boundary condition in their study. The influence
of a catalytic wall on the convective heat transfer can be profound for cases where the flowfield is highly reactive3 .

The peak radiative heating for this case occurs at the stagnation point and is computed to be 5.94 W /cm 2 . This decreases rapidly
and reaches a fairly constant value of about 2 W /cm 2 on the conical surface. The stagnation point radiative heat transfer agrees very
well with the 6,63 W/cm 2 result of Park9 .

The next figures give a more qualitative description of the flowfield in the form of contour plots. Figure 10 is a plot of the percent N2mass concentration and shows that the gas is most highly dissociated near the stagnation point and the degree of dissociation decreases
with axial distance. Figure 1I plots the contours of translational-rotational temperature. A comparison with Figure 12, which presents
N2 vibrational temperature contours, shows that these two temperatures are nearly in equilibrium for a large part of the flowfield.
However, Figure 13 shows that the electron temperature remains lower than both other temperatures.

Figure 14 is a contour plot of the radiative emission power from the flowfield. The largest emission occurs on the stagnation
streamline where the temperatures and the density are highest. The radiative power falls off rapidly from this point to a fairly constant
level on the conical section of the body.

In summary, the results from this case indicate that the flowfield is highly reactive and radiative. The stagnation point heat transfer
results are consistent with previously published experimental work. A major portion (26%) of the total heat transfer to the stagnation
point is from radiation for this non-catalytic wall case. The maximum convective heat transfer occurs off of the nose, near the ellipsoid-
cone juncture. The inclusion of thermal nonequilibrium for this case is mandatory for the accurate calculation of radiation because
approximately a 5% error in the vibrational and electron temperatures results in a factor of two error in the radiative emission.

The second case is at an altitude of 90 km and a speed of nearly 10 km/s. Although the vehicle does not experience its peak
heat transfer at this point, the aerothermal characteristics are still important because they help determine the total heat load and flight

trajectory. The conditions at this point are similar to the previous case except that the density is considerably (9 times) lower and the
speed is slightly greater.I The first series of plots for this case show the characteristics of the flow on the stagnation streamline. The standoff distance based on
the six-fold density increase is 0.167 m or7.24% of the noseradius. Figure 15 is a semi-logplot of the molar concentrations and Figure
16 is a plot of three temperatures on the stagnation streamline. The translational-rotational temperature reaches a peak of 40,000 K,the vibrational temperature of nitrogen rises to 13,000 K, and the electron temperature peaks at7200 K. This case is characterized by
a high degree of thermal nonequilibrium with a relatively minor excitation of the vibrational and electron modes.

The calculated convective and radiative heating are plotted in Figure 17. The distribution is similar, though about 10% lower,
than the 78 km case. The increase in the heat transfer off of the stagnation point is also evident for this case. The stagnation point
heat transfer of 15.8 W/cm2 is similar to the 18 A W/cm 2 reported by Moss el al 33 The stagnation point radiative heat transfer is
0.112 W/cm2 , which is much smaller than the convective component (164 times less) and the radiative heat transfer for the previous
case (53 times less). The much smaller thermal excitation and the lower density of this case has caused the radiative heat transfer to
be less significant. Figure 17b also shows that the maximum radiative heat transfer occurs at the stagnation point. There is also a peak
of nearly the same magnitude at E 2.6 m. The reason for this will become evident when the following contour plots are disciussed.

Figure 18 is a contour plot of the N2 mass concentration and shows that the minimum concentration of diatomie nitrogen occurs, not
at the nose, but on the shoulder of the body (zx0 .75 in and y='2.25 in). The next three figures are plots of tbe translational-rotational
temperature (Fig. 19), N2 vibrational temperature (Fig. 20), and the electron temperature (Fig. 21). The first, Fig. 19, shows that
the maximum translational-rotational temperature occurs behind the shock on the stagnation point, as expected. However, the peak
vibrational and electron temperatures (Figs. 20 and 21) are on the shoulder of the body. This phenomenon is most evident for the
electron 'emperature, which reaches its maximum of nearly 8500 K at this point, as opposed to 7200 K on the stagnation streamline.

The reason why a peak in the degree of chemical reaction and thermal excitation occurs off the stagnation point is made clear by
considering Figure 22, which is a streamlino plot. Particles are introduced in the free-stream and traced through the flowfield. Consider
the streamline that enters the flowfield at ,,- 0.9 m. It passes through an oblique, though strong shock wave, and flows around the
body, far enough away from the surface that it does not enter the cool boundary layer. This fluiu element experiences rather severe
heating inside the entire shock layer and because is travels a significant physical distance, it undergoes apprecia',le reaction and thermal
excitation. Thus, because of the nonequilibrium nature of the flow, the peak degree of reaction can occur off the stagnation point. Figure
23 is a plot of the radiative emission from the flowfield. The peak radiation power occurs near the shoulder of the body (z 0.75 m
and y =,2.25 m ) wlere the maximum thermal excitation of the gas has occurred. It should be noted that this effect would be more
pronounced for a full scale aerobrake because the gas would have a larger distance to thermalize and would become more radiant.

This case demonstrates that thermo-chemical nonequilibrium can have a large influence on the state of the gas. The largest degree
of reaction and thermal excitation do not occur at the stagnation point, and as a result, neither does the peak radiative emission.

5.3.2 AOTV Afterbody
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Several notable features of the AOTV- afterbody flowfield will be discussed at the two conditions of interest using contour plots.

Consider Figs. 24a and 24b, which are contours of translational-rotational temperature at the two flight conditions. We see that the

peak temperature occurs at the stagnation point of the body in both cases. The wake region is much cooler because the gas expands

rapidly as it flows over the body shoulder. The result is that most of the afterbody flowfield has a translational-rotational temperature

of less than 10,000K. In the 78km case, we see evidence of reheating of the gas where it is recompressed near the centerline; here the

temperature returns to about 7000K. This region is where the wake closes and is forced to turn parallel to the centerline. Similarlyfor

the 90kmi case the temperature peaks at something less than 10, 000K.

The next figures, 25a and 25b, show contours of nitrogen vibrational temperature for both conditions. (The other three vibrational

temperatures and the electron-electronic temperature are similar, and are not plotted.) These figures demonstrate the different behavior

of the vibrational state of the gas compared to the translational-rotational state. We see that much of the afterbody flowfield has a

higher vibrational temperature than translational-rotational temperature because vibrational energy is frozen at high levels as the gas

expands around the body shoulder. In this shoulder region the flow speed is high and the rate of vibrational equilibration is low (it is

proportional to the pressure), so that little energy is tranfered from vibration to the cooler translational modes of the gas. Both altitude

cases show this type ofbehaviour, with the 90 km-condition having a higher vibrational temperature in the wake.

Figures 26a and 26b plot the difference between the translational-rotational temperature and the nitrogen vibrational temperature, T-

T,. They cleary show the phenomenon of vibrational freezing where the vibrational temperature remains high while the translational

temperature has dropped due to the expansion. It L also interesting to note that near the centerline of the body, these two temperatures

are nearly equal. Thus for the flow immediately behind the vehicle, there is a state of near vibrational equilibrium. The elevated

vibrational temperature has ramifications in the design of the vehicle because this gas will radiate much more than a gas in equilibrium.

As a further illustration of the state of nonequilibrium of the gas we can consider a non-dimensional number, ,, that measures the rate

of vibrational energy exchange relative to the local flow rate. Let us define

= L (5.2)

where T is the characteristic time for vibrational equilibration (see equation (3.40)), u is the local speed, and L is the characteristic

length of the body. Figures 27a and 27b plot the logarithm (base 10) of this quantity. We see that in much of the wake this parameter

is between 10- 3 and 10-2, indicating that the rate of fluid motion is much greater than the rate of vibrational relaxation,- thus the

vibrational energy remains frozen in the gas. It is only in the region of recirculation, which will be shown later to be immediately

behind the body, where there is sufficient residence time for die gas to equilibrate.

Figures 28a and 28b are plots of the percent mass fraction of N2 . There is significant dissociation of the gas in the nose region; this

gas is swept around the body and remains reacted through much of the wake. Thus we see evidence of chemical freezing in the same

region where vibrational freezing occurs. A parameter that describes the degree of nonequilibrium of the nitrogen mass fraction can

be written as
04 = -;-, (5.3)upo

where wN, is the rate of production of N2 due to chemical reaction (see equation (3.50)). This parameter is about the same magnitude

as the ip. for most of the wake, indicating that the gas is not in chemical equilibrium in the wake. Because of this phenomenon, there

is a large gradient of mass fraction between the centerline of the body and the free-stream. This affects the atomic weight of the gas,

the isentropic exponent, the speed of sound, and consequently the dynamics of the gas in tie-wake region. This important effect must

be included in any analysis of this type of wake flow.

The next plots, Figures 29a and 29b, are pathline tracings in the region immediately behind the vehicle.-Both cases show the same

general features: separation of the flow on the back face of the vehicle, a strong recirculation region driven by the high speed gas that

expands over the shoulder, and a reattachment point on the centerline. However, the two conditions are significantly different also.

The separation point on the base moves further down the back of the body at the higher altitude, due to the lower Reynolds number

of this flow. Also the recirculation region is much smaller for this case. It is also interesting to note that the location of the vortical

structure is different in each case. The location and size of these features is dependent on the correct modeling of the gas, not only

its thermo-cliemical state, but also resolving or modeling any effects of turbulence that may be present. The presence of turbulence

will influence the location of the attachment point in the wake, the thickness and location of the shear layer and the structure of the

recirculation region, Because of the coarse grid used in these simulations and the neglect of transition and turbulence the detailed

structure of the recireulation region should be considered only in a qualitative sense at this time.

6. Summary

The multi-temperature chemical nonequilibrium technique has been shown to reproduce a number of experiments over a wide range

of condittons, validating its use for the calculation of flows about AOTV's. The forebo-!y and afterbody regions of an axisymmet-

nc version of an AOTV have been computed Cor two conditions. In these results we have seen the influence that thermo-chemlcal

nonequilibrium can have on the flowfilcd, including the location of the peak radiative emission, and the effect of vibrational tempera-

ture overshoot in the wake. Some other effects have been mentioned and their importance in modeling these flows has been discussed.

These flows show that the correct modelingof a separated.chemically reacting, hypersonic flow has many effects that must be included.

Extensions of the two dimensional AOTV- analysis to three dimensions is currently being treated by several investigators (e.g.
Gnoffo33, Li38, and PalmerS9). Additional extension of the analysis method to include rotatinal nonequilibrium and slip boundary

conditions necessary for application at even higher altitudes have been considered by Gokcen and MacCo'mack~ •
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Fig. 29 Computed pathlincs over AOTV

APPENDIX

CONSTANTS USED IN AIR MODEL

In this section the various constants that were introduced in the discussion of the physical model of air. The heats of formation of
the seven chemical specie3 used are listed below.

Table A.1 Heats of formation (i/lkg).

Species h_____. __

N2 0.0
02 0.0
NO 2.996123 x 107-
NO+ 3.283480 x 101
N 3.362161 x 10'1

10 1.543119 x 10'
! _____ 0.0

The coefficients required for the viscosity model of Blottnert0 et al. are given in the following table.

Table A.2 Viscosity Coefficients for Blottner Model

Npecie A. -B. - C' -

N2 0.0268142 0.3177838 *11.3155513
02 0.0449290 -0.0826158 -9.2019475
NO 0.0436378 -0.0335511 -9.5767430
NO* 0.3020141 -3.5039791 -3.7355157
N 0.0115572 0.6031679 -12.4327495
0 -~0.0203144 1 0.4294404 -11.6031403
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t The Arrhenius coefficients required for the calculation of the forward reaction rates for the six reactions and the possible collision
partners are given in the following table. These were taken from Park t 9 and Bussing and EberhardtP.

Table A.3 Arrhenius coefficients for forward reaction rates.

Reaction Partner C,,, (m"/kg s) _ _. Od, (K)
N2  3.700 x 1011 -1.600 113200
02 3.700 x 10s  -1.600 113200
NO 3.700 x 101 -1.600 113200
NO +  3.700 x 10's  -1.600 113200
N 1.110 x I019  .1.600 113200
O 1.110 x I0' 9  -1.600 113200
e- I10 x 1021 -1.600 113200

2 N2  2.750 x 10"' -1.000 59500
02 2.750 x 1016 -1.000 59500
NO 2.750 x 1016 -1.000 59500
NO +  2.750 x 1016 -1.000 59500
N 8.250 x 1Os  -1.000 59500
O 8.250 x 106 -1,000 59500
e- 1.320 x 10'9 .1.000 59500

3 N2  2.300 x 101 .0.500 75500
02 2.300 x I0 " -0.500 75500
NO 2.300 x 101" -0.500 75500
NO4  2.300 x 10"4 -0.500 75500
N 4.600 x 1014 -0.500 75500
O 4.600 x 10' 4  -0.500 75500
e- 7.360 x 1016 -0.500 75500

4 - 3,180 X 10 0 0.100 37700
5 2:160 x 10 1.290 19220
6 6.500 x 10 0.000 32000

The characteristic temperatures used in the harmonic oscillator model (equation (3.21)) and the ditiasion model (equation (3.38))
are given in Table A.4. The table also includes the collision diameters for use in the vibration-vibration coupling model (equation
(3.47)).

Table A4 Molecular constants for use in the harmonic oscillator model for vibration, the diffusion model of vibrational excitation, and
the vibration-vibration coupling model.

Species 0,, (K) 0, (K) d, x 10 0 (m)
N2  3395 5000 3.709
02 2239 3350 3.608
NO 2817 4040 3.534
NO* 2817 4040 3.534

Th: equilibrium constants for the chemical reactions are computed using the expression it. Park19, which is a curve fit to experi-
mental data. ThIs is done using

Kq, exp (Al. + A2mZ + AmZ 2 
+ A4 mZ5 

+ AsmZ
4
), (A.1)

whereZ = 10,000/T, (T in K) and the constants are given in Table A.5.

Table A.5 Constants for computing equilibrium reaction constants.

Reaction At. A2 . A3. A4M As
1 3.898 -12.611 0.683 -0.118 0.006
2 1.335 -4.127 -0.616 0.093 -0.005
3- -1.549 -7.784 0.228 -0.043 0.002
4 2.349 -4.828 0.455 -0.075 0.004
5 0.215 -3.652- 0.843 -0.136 0.007
61 -6.234 -5.536 -0.494 -0.058 0.003
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